• Title/Summary/Keyword: Action Force of Reaction Wheel

Search Result 3, Processing Time 0.021 seconds

Identification of Input Force for Reaction Wheel of Satellite by Measured Action Force on Decelerating (감속 시의 고정부 작용력 측정을 이용한 반작용휠 계의 가진 입력 특성 규명)

  • Shin, Yun-Ho;Heo, Yong-Hwa;Oh, Shi-Hwan;Kim, Dae-Kwan;Kim, Kwang-Joon;Yong, Ki-Lyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.671-677
    • /
    • 2009
  • A reaction wheel is commonly used, as an important actuator, to control the attitude of a satellite. Operation of the reaction wheel plays a role of an excitation source to loading equipment inside the satellite. As requirements for environmental vibration to manifest the performance of precision equipment are getting more stringent, the research for analysis or reduction of unwanted action force in high frequency range when operating the reaction wheel is necessary. In this paper, the procedure to extract input forces and damping of a rotor system of reaction wheel is suggested. The analysis for measured action forces of reaction wheel is accomplished and important higher harmonics of action forces are determined. The input forces and damping of the rotor system are, then, extracted by curve-fitting and a particular solution for input force.

  • PDF

Identification of Input Force for Reaction Wheel of Satellite by Measured Action Forceon Decelerating (감속 시의 고정부 작용력 측정을 이용한 반작용휠 계의 가진 입력 특성 규명)

  • Shin, Yun-Ho;Heo, Yong-Hwa;Oh, Shi-Hwan;Kim, Dae-Kwan;Kim, Kwang-Joon;Yong, Ki-Lyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.263-271
    • /
    • 2010
  • A reaction wheel is commonly used, as an important actuator, to control the attitude of a satellite. Operation of the reaction wheel plays a role of an excitation source to loading equipment inside the satellite. As requirements for environmental vibration to manifest the performance of precision equipment are getting more stringent, the research for analysis or reduction of unwanted action force in high frequency range when operating the reaction wheel is necessary. In this paper, the procedure to extract input forces and damping of a rotor system of reaction wheel is suggested. The analysis for measured action forces of reaction wheel is accomplished and important higher harmonics of action forces are determined. The input forces and damping of the rotor system are, then, extracted by curve-fitting and a particular solution for input force.

Control of Inverted Pendulum using Twisted Gyro-Wheel (비틀림 자이로휠을 이용한 인버티드 펜듈럼의 제어)

  • Hwang, Jung-Moon;Pyo, Beom-Sik;Kim, Jung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1181-1188
    • /
    • 2011
  • A control system for stabilizing a small robot or inverted pendulum using twisted gyro wheel is proposed. Conventional stabilizer using inertial wheel employs action-reaction force/torque to control a pendulum, which can generate relatively small torque and short period of output. In this paper, a novel actuation method using twisted gyro torque in 3-dimentional space was proposed to stabilizing a pendulum by twisting the assembly including a rotating gyro wheel. In addition, two special control functions for this type of twisted gyro wheel were designed. One is the function of self-adjusting the mass center of the robot and the other is the torque reloading configuration for continuous torque generation. The proposed system was verified by experimental result and simulation. The designed twisted gyro wheel control system can be easily packed in a small size module and installed in a humanoid robot or inverted pendulum type mechanism.