• Title/Summary/Keyword: Acting Technique

Search Result 189, Processing Time 0.026 seconds

Overload Surge Investigation Using CFD Data

  • Flemming, Felix;Foust, Jason;Koutnik, Jiri;Fisher, Richard K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.315-323
    • /
    • 2009
  • Pressure oscillations triggered by the unstable interaction of dynamic flow features of the hydraulic turbine with the hydraulic plant system - including the electrical design - can at times reach significant levels and could lead to damage of plant components or could reduce component lifetime significantly. Such a problem can arise for overload as well as for part load operation of the turbine. This paper discusses an approach to analyze the overload high pressure oscillation problem using computational fluid dynamic (CFD) modeling of the hydraulic machine combined with a network modeling technique of the hydraulic system. The key factor in this analysis is the determination of the overload vortex rope volume occurring within the turbine under the runner which is acting as an active element in the system. Two different modeling techniques to compute the flow field downstream of the runner will be presented in this paper. As a first approach, single phase flow simulations are used to evaluate the vortex rope volume before moving to more sophisticated modeling which incorporates two phase flow calculations employing cavitation modeling. The influence of these different modeling strategies on the simulated plant behavior will be discussed.

The Study of Mutation Spectrum in Iac / Gene of Transgenic Big Blue$\textregistered$ Cell Line Following Short-Term Exposure to 4-Nitroquinoline N-oxide

  • Youn, Ji-Youn;Kim, Kyung-Ran;Cho, Kyung-Hea;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1996.12a
    • /
    • pp.64-64
    • /
    • 1996
  • Transgenic animal and cell line models which are recently developed in toxicology field combined with molecular biological technique, are powerful tools for studying of mutation in vivo and in vitro, respectively. The Big Blue mutagenesis assay system is one of the most widely used transgenic systems. Especially, for the study of direct acting mutagens, Big Blue cell line is very useful and powerful to evaluate mutagenicity because the mutation frequency and mutationspectrlun showed no distinct differences between cell line and animal. The Big Blue cell lines carry stably integrated copies of lambda shuttle vector containing lac I gene as a mutational target. These lambda shuttle vectors are useful for various mutagenesis related studies in eukaryotic system due to their ability to be exposed mutagen and then transfer a suitable target DNA sequence to it convenient organism for analysis. We tried to assess the mutagenic effect of 4-NQO with Big Blue cell line. After the treatment of 4-NQO, genomic DNA was isolated and lambda shuttle vector was packaged by in Vitro packaging and then these were plated on bacterial host in the presence of X-gal to screen mutation in the lac I. We determined MF as a ratio of blue plaques versus colorless plaques and now undergoing the mutation spectrum of 4-NQO in lac J gene sequence.

  • PDF

The Magnus Efface of a Rotating Circular Cylinder Near a Plane Wall (벽면 근처에서 회전하는 원주의 마그너스 효과)

  • Ro, Ki-Deok;Kim, Kwang-Seok;Oh, Se-Kyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.957-962
    • /
    • 2007
  • The flow around a rotating circular cylinder near a plane wall is investigated by the measurement of the lift acting on the cylinder and by the flow visualization using the hydrogen bubble technique in the circulating water tank. The experimental parameters are the rotating direction of the cylinder, the space ratios H/D($H/D=0.05{\sim}0.5$) between cylinder and plane wall and the velocity ratios ${\alpha}({\alpha}=0{\sim}{\pm}2.0)$. In the case of clockwise, the lift on the rotating circular cylinder was increased with the reduction of the space ratios and with the velocity ratios, the upper separation point was more shifted in the rotating direction with them. In the case of anticlockwise, the absolute value of the lift on the rotating circular cylinder was increased with the space ratios and with the velocity ratios, the lower separation point was more shifted in the rotating direction with them.

Performance and Welding Quality Analysis for the Zircaloy Spacer Grid Assembly of PWR Fuel (경수로 원전연료용 지르칼로이 지지격자체의 성능 및 용접품질 분석)

  • Song, Gi-Nam;Lee, Su-Beom;Kim, Yong-Wan;Kim, Su-Seong;Han, Hyeong-Jun
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.203-205
    • /
    • 2007
  • A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly for pressurized water reactors(PWRs). The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. And also, the spacer grid assembly is hydraulically required to have less hydraulic resistance of coolant. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, weld qualities such as, weld bead size and spatter manufactured by various welders were compared and analyzed. And performance parameters such as impact strength of spacer grid and hydraulic resistance of coolant were also compared and analyzed. Comparison results show that the weld qualities could be improved by selecting the optimal welding condition and also improving the welding technique.

  • PDF

A Comparative study of Assessment Techniques for Soil Ecosystem Health: Focusing on Assessment Factors of Soil Health (토양생태계 건강성 평가기법 비교연구: 토양건강성 평가항목을 중심으로)

  • Chae, Yooeun;Kim, Shin Woong;Kwak, Jin Il;Yoon, Youngdae;Jeong, Seung-Woo;An, Youn-Joo
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.15-24
    • /
    • 2015
  • The soil ecosystem is a complex system performing particularly complicated and varied functions, such as providing a habitat for organisms, acting as a medium for plant cultivation and growth, and functioning as a buffer against external materials in the environment. To assess whether these important functions of the soil ecosystem are executed appropriately, the concept of soil ecosystem health has been introduced, which is defined as the ability to perform the specific functions of the soil ecosystem. Understanding soil properties and soil indicators related to soil functions is essential to assess the soil health. In this study, systems, the indicators, and evaluation factors for assessing soil ecosystem health employed in a number of countries were investigated and discussed. In particular, it is necessary to introduce a technique for the evaluation of soil ecosystem health in Korea and to develop techniques and indicators appropriate to the soil ecosystem and status in Korea.

Free-fall Force Measurement in a Shock Tunnel (충격파 풍동에서의 자유 낙하 장치를 활용한 힘 측정)

  • Park, Jinwoo;Chang, Won Keun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.463-467
    • /
    • 2016
  • In this paper, acceleration and pressure exerted on a human model were measured under a supersonic condition in a shock tunnel. In order to measure these in an interference-free environment, free-fall technique with an electromagnet and a three-dimensional iron-powdered human model was used. Free-fall experiment was conducted at Mach 4 and the force acting on the model was obtained by calculating the displacement from the flow visualization images.

Prediction of Aerodynamic Loads for NREL Phase VI Wind Turbine Blade in Yawed Condition

  • Ryu, Ki-Wahn;Kang, Seung-Hee;Seo, Yun-Ho;Lee, Wook-Ryun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2016
  • Aerodynamic loads for a horizontal axis wind turbine of the National Renewable Energy Laboratory (NREL) Phase VI rotor in yawed condition were predicted by using the blade element momentum theorem. The classical blade element momentum theorem was complemented by several aerodynamic corrections and models including the Pitt and Peters' yaw correction, Buhl's wake correction, Prandtl's tip loss model, Du and Selig's three-dimensional (3-D) stall delay model, etc. Changes of the aerodynamic loads according to the azimuth angle acting on the span-wise location of the NREL Phase VI blade were compared with the experimental data with various yaw angles and inflow speeds. The computational flow chart for the classical blade element momentum theorem was adequately modified to accurately calculate the combined functions of additional corrections and models stated above. A successive under-relaxation technique was developed and applied to prevent possible failure during the iteration process. Changes of the angle of attack according to the azimuth angle at the specified radial location of the blade were also obtained. The proposed numerical procedure was verified, and the predicted data of aerodynamic loads for the NREL Phase VI rotor bears an extremely close resemblance to those of the experimental data.

A Research on Terminal Performance Enhancement in Single-Carrier System (단일 반송파 시스템의 단말기 성능 개선 연구)

  • Jung, Hyeok Koo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • This Paper Addresses a Performance Enhancement of Multitude Receivers Communicating with a Basestation. A General Link between Basestation and Terminal is that a Basestation is connected with Multitude Receivers and Time, Frequency and Code are shared and used among them. We propose an Algorithm of Enhancing Receiver Capability at the Receiver when access Point of Acting as a Basestation in this Environment Modifies Transmission Data Separately to be sent. In the Proposed Algorithm, we configure Transmit Data to Use Maximal Ratio Combining Technique in the Receiver, and Estimate Transmitter Signal per Each Receiver and Simulate Bit Error Rate and Show the Performance Results.

Kinetic analysis of the elbow joint in human motion (인체운동에 있어서 주관절의 운동학적 분석)

  • Noh, Tae-Hwan;Kim, Sik-Hyun;Kim, Jae-Hun
    • PNF and Movement
    • /
    • v.5 no.1
    • /
    • pp.49-56
    • /
    • 2007
  • Objectives : We find that the reaction force on the elbow joint during elbow flexion, extension with and without an object in the hand can be calculated the equations of motion that the sum of the torque and the sum of the force acting on the elbow joint must be zero and (moment of inertia x angular acceleration) and (mass x acceleration). Methods : we have calculated the equations of motion (${\Sigma}F=0$, ${\Sigma}{\tau}=0$, ${\Sigma}F=ma$, ${\Sigma}{\tau}=Ia$) to investigate the reaction force on the elbow joint during elbow flexion, extension by means of the simplified free-body technique for coplanar forces. Results : we found that the reaction force on the elbow joint during elbow flexion, extention as constant acceleration motion is more than constant velocity, static motion. Also, we found that the relation between during flexion and during extension like this ; $J_{flexion}$ < $J_{extension}$.

  • PDF

Studies on Ventilation Control for a Ventilated Supercavitating Vehicle (분사형 초공동 수중운동체의 가스 분사량 제어 연구)

  • Kim, Seonhong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.206-221
    • /
    • 2015
  • Supercavitation is a modern technique which can be used to surround an underwater vehicle with a bubble in order to reduce the resistance of the vehicle. When the vehicle is at low speed in the deep sea, the cavitation number is relatively big and it is difficult to generate a cavity large enough to envelope the vehicle. In this condition, the artificial cavity, called ventilated cavity, can be used to solve this problem by supplying gas into the cavity and can maintain supercavitating condition. In this paper, a relationship between the ventilation gas supply rate and the cavity shape is determined. Based on the relationship a ventilation rate control is developed to maintain the supercavitating state. The performance of the ventilation control is verified with a depth change control. In addition, dynamics modeling for the supercavitating vehicle is performed by defining forces and moments acting on the vehicle body in contact with water. Simulation results show that the ventilation control can maintain the supercavity of an underwater vehicle at low speed in the deep sea.