• 제목/요약/키워드: Actin affinity

검색결과 11건 처리시간 0.018초

The Carboxyl Terminal Amino Acid Residues Glutamine276-Threonine277 Are Important for Actin Affinity of the Unacetylated Smooth ${\alpha}$-Tropomyosin

  • Cho, Young-Joon
    • BMB Reports
    • /
    • 제33권6호
    • /
    • pp.531-536
    • /
    • 2000
  • Tropomyosin (TM) is an important actin binding protein involved in regulation of muscle contraction. Unacetylated striated tropomyosin failed to bind to actin whereas unacetylated smooth tropomyosin bound well to actin. It has been demonstrated that high actin affinity of unacetylated ${\alpha}-tropomyosin$ was ascribed to the carboxyl terminal amino acid residues. In order to define the role of the carboxyl terminal residues of tropomyosin molecule on actin binding, two mutant tropomyosins were constructed. TM11 is identical to the striated tropomyosin except that the carboxyl terminal last three amino acids was replaced with $^{282}NNM^{284}$ whereas in TM14 $^{276}HA^{277}$ was substituted with smooth specific $^{276}QT^{277}$. TM11 and TM14 were overproduced in Escherichia coli and analyzed for actin affinity. The apparent binding constants (Kapp) of unacetylated tropomyosins were $2.2{\times}10^6M^{-1}$ for sm9, $1.03{\times}10^6M^{-1}$ for TM14, $0.19{\times}10^6M^{-1}$ for TM11, $>0.1{\times}10^6M^{-1}$ for striated, respectively. This result indicated that higher actin affinity of the unacetylated smooth tropomyosin was primarily attributed to the presence of QT residues in the smooth sequence. In case of the Ala-Ser (AS) dipeptide extension of the amino terminus of tropomyosin, Kapp were $21.1{\times}10^6M^{-1}$ for AS-sm9, $8.0{\times}10^6M^{-1}$ for AS-11, $4.7{\times}10^6M^{-1}$ for AS-14, $3.8{\times}10^6M^{-1}$ for AS-striated. AS-TM11 showed considerably higher actin affinity than AS-TM14, implying that interaction of Ala-Ser of the amino terminus with the carboxyl terminal residues. Since Kapp of AS-TM11 was significantly lower than that of AS-sm9, the presence of QT might be required for restoration of high actin affinity of the smooth ${\alpha}-tropomyosin$. These results suggested that the carboxyl terminal amino acid residues Glutamine275-Threonine276 are important for actin affinity of the recombinant smooth ${\alpha}-tropomyosin$, particularly of unacetylated smooth ${\alpha}-tropomyosin$.

  • PDF

Effect of Three Amino Acid Residues at the Carboxyl Terminus in Unacetylated ${\alpha}$-Tropomyosin on Actin Affinity

  • Cho, Young-Joon;Jung, Sun-Ju;Seo, Sang-Min;Suh, Kye-Hong;Yang, Jae-Sub
    • Journal of Life Science
    • /
    • 제11권1호
    • /
    • pp.1-6
    • /
    • 2001
  • In order to determine the role of the carboxyl terminal amino acid residues of unacetylated ${\alpha}$-tropomyosin in actin affinity two mutant tropomyosins were constructed by site-directed mutagenesis. TM16 was identical to the striated tropomyosin except that three amino acids in the carboxyl terminal end were altered to $^{282}TNM^{284}$ while in TM17 $^{282}TSI^{284}$ of the striated was replaced with$^{282}NSM^{284}$. TM16 and TM17 were overproduced in Escherichia coli and analyzed for actin affinity by comparing actin affinities of the striated and TM11 $^{282}NNM^{284}$). The apparent binding constants (Kapp) of unacetylated tropomyosins to actin were $5.1{\times}10^4M^{-1}$ for the striated, $1.1{\times}10^5M^{-1}$ for TM11, $1.09{\times}10^5M^{-1}$ for TM16, and $1.03{\times}10^5M^{-1}$ for TM17, respectively. Since the actin affinities of TM11, TM16, and TM17 were very similar, this result suggested that amino acid residues 282 and 283 were insignificant for acting affinity of unacetylated $\alpha$-tropomyosin. However, they all exhibited higher actin affinities than that of the striated, suggesting that Met residue at the carboxyl terminus of unacetylated smooth tropomyosin was rather important for actin affinity, presumably due to the nucleophilic nature of sulfur atom in Met residue.

  • PDF

평활근 α-트로포마이오신 Gln276잔기의 액틴친화력에 대한 중요성 (Glutamine Residue at 276 of smooth muscle α-tropomyosin is primarily responsible for higher actin affinity)

  • 정선주;조영준
    • 생명과학회지
    • /
    • 제17권2호통권82호
    • /
    • pp.204-210
    • /
    • 2007
  • 평활근 ${\alpha}$-트로포마이오신의 높은 액틴 친화력은 아미노산 잔기 Gln276 및 Thr277에 기인한다는 이전 보고에 따라, 2 잔기 중 어느 잔기가 액틴 친화력에 더 중요한 가를 알아보기 위하여 골격근 트로포마이오신의 His 혹은 Ala 단일 잔기를 각각 Gln 혹은 Thr으로 치환한 돌연변이 트로포마이오신을 제작하여 대장균에서 대량발현 시킨 후 정제하여 액틴 결합력을 측정하였다. 비록 비아세틸화된 트로포마이오신의 경우 Gln 및 Thr 잔기가 최고 액틴친화력을 위해 모두 필요하나, 돌연변이 트로포마이신 중 Gln 잔기를 가진 돌연변이 트로포마이오신들이 다른 돌연변이 트로포마이오신들에 비하여 3에서 4배 높은 액틴친화력을 보였다. 이러한 결과는 평활근 ${\alpha}$-트로포마이오신의 높은 액틴 친화력은 Thr277 잔기보다 Gln276 잔기에 주로 기인한다는 것을 의미한다.

α-트로포마이오신의 276 또는 277 아미노산 잔기가 단일 시스테인 잔기로 치환된 돌연변이 트로포마이오신의 액틴친화력 (Actin Affinities of Recombinant α-Tropomyosins That Residues 276 or 277 in the Carboxyl Terminal Region are Individually Substituted to a Cysteine Residue)

  • 김돈규;조영준
    • 생명과학회지
    • /
    • 제19권5호
    • /
    • pp.573-580
    • /
    • 2009
  • 화학적 변형 방식에 의한 트로포마이오신과 액틴의 상호작용을 규명하기 위하여 액틴결합에 중요한 역할을 하는 C-말단부위의 아미노산 잔기 276 또는 277을 단일 시스테인 잔기로 치환한 돌연변이 트로포마이오신을 제조하여 대장균에서 대량 발현시킨 후 액틴 결합력을 측정하였다. 잔기277을 시스테인 잔기로 치환시킨 TM24(QC) 및 TM29(HC)는 액틴 결합 성질을 잃어버렸을 뿐만 아니라 트로포닌 존재 하에서도 액틴결합력이 증가하지 않았다. 이 결과는 잔기 277이 트로포마이신 기능에 중요한 역할을 한다는 것을 제시한다. 반면 잔기 276을 시스테인 잔기로 치환한 TM22(CT) 및 TM23(CA)는 액틴과 비교적 잘 결합하였을 뿐만 아니라 트로포닌 존재 하에서 액틴결합력이 증가하였다. 따라서 TM23(CA)는 시스테인 잔기를 도입하여도 트로포마이오신의 기능을 유지하였으며 향후 화학적 변형 연구를 위한 도구로 중요하게 사용될 수 있을 것이다.

a-Tropomyosin의 아미노 말단 구조가 기능에 미치는 영향 (Functions of a-Tropomyosin Are Mainly Dependent upon the Local Structures of the Amino Terminus)

  • Cho, Young-Joon
    • 생명과학회지
    • /
    • 제14권5호
    • /
    • pp.770-777
    • /
    • 2004
  • a-Tropomyosin (TM)의 아미노(N) 말단 구조의 중요성을 확인하기 위하여 N 말단에 알라닌 아미노산 잔기 하나를 첨가한 재조합 Ala-TM을 제조하였다. Ala-TM을 대장균에서 대량발현 시켜 정제한 후, N 말단이 아세틸화된 근육TM및 N말단에 알라닌-세린 잔기를 첨가한 AS-TM과 N말단이 비아세틸화된 TM등의 재조합 TM과 기능을 비교하였다. Ala-TM은 비아세틸화된 TM보다 액틴친화력이 현저히 증가했으나, 근육 및 AS-TM 보다는 약 3배정도 약하게 액틴에 결합하였다. 근육 TM, AS-TM,그리고 Ala-TM모두가 myosin 51의 농도가 낮을 때 ATPase 활성을 억제하였고 농도가 높을 때 촉진하였으나, 억제와 촉진의 정도는 서로 차이가 있었으며 비아세틸화된 TM은 억제하지 않았다. 이들 결과는 N말단 구조가 TM의 기능을 결정하는 중요한 요소임을 나타내며 TM의 온전한 기능을 위해서는 아세틸화된 N 말단이 필요하다는 것을 의미한다.

Expression of an Angiogenin Binding Peptide and Its Anti-Angiogenic Activity

  • Choi, Suk-Jung;Ahn, Mi-Won;Yoon, Kyoung-Bum;Park, Jong-Won
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.427-431
    • /
    • 1998
  • In the previous report (Choi et al., 1997), the angiogenin binding peptides identified from a phage-peptide library were analyzed by using the fusion proteins composed of the Escherichia coli maltose binding protein and its corresponding peptides. However, it was difficult to obtain a sufficient amount of the fusion proteins required for further analysis because of the low expression level. We now report a high level expression of the fusion protein and analysis of its anti-angiogenin activity. The use of strong T7 promoter and removal of signal sequence allowed about a 20-fold increase in the expression efficiency of the fusion protein. We were able to obtain about 10 mg of purified fusion protein from one liter of culture. The purified fusion protein showed angiogenin-specific affinity and inhibited the binding of biotinylated actin to human angiogenin at $IC_{50}$ of 0.6 mM. Its anti-angiogenin activity was also revealed by the chorioallantoic membrane assay.

  • PDF

Oligomeric Structure of ${\beta}$-Glucosidases

  • Kim, Sang-Yeob;Kimm, In-Soo
    • Journal of Photoscience
    • /
    • 제11권3호
    • /
    • pp.121-127
    • /
    • 2004
  • The${\beta}$-glucosidases occur widely in all living organisms and has in general a tendency to form oligomers of varying numbers of subunits or aggregates, although the functional implications of such diverse oligomerization schemes remain unclear. In particular, the assembly mode of the oat ${\beta}$-glucosidase is very unique in that it multimerizes by linear stacking of a hexameric building block to form long fibrillar multimers. Some structural proteins such as actin and tubulin assemble into long fibrils in a helical fashion and several enzymes such as GroEL and Pyrodictium ATPase functional complexes, 20S proteasome of the archaebacterium Thermoplasma acidophilum, and lutamine synthetase fromblue-green algae, assemble into discrete oligomers upto 4 stacked rings to maintain their enzymatic activities. In particular, oat ${\beta}$-glucosidase exists in vivo as a discrete long fibrillar multimer assembly that is a novel structure for enzyme protein. It is assembled by linear stacking of hollow trimeric units. The fibril has a long central tunnel connecting to the outer medium via regularly distributed side fenestrations. The enzyme active sites are located within the central tunnel and multimerization increases enzyme affinity to the substrates and catalytic efficiency of the enzyme. Although it is suggested that oligomerization may contribute to the enzyme stability and catalytic efficiency of ${\beta}$-glycosidases, the functional implications of such diverse oligomerization schemes remain unclear so far.

  • PDF

Production and bioactivity of recombinant tilapia IL-$1\beta$

  • Hong, Su-Hee
    • 한국어병학회지
    • /
    • 제22권2호
    • /
    • pp.147-153
    • /
    • 2009
  • To study the biological activity of interleukin-$1\beta$(IL-$1\beta$), a proinflammatory cytokine, in nile tilapia, Oreochromis niliticus, the recombinant tilapia IL-$1\beta$ was produced in E. coli cells based on pQE vector. Ni-NTA (nitriloacetic acid) metal affinity chromatography was used to purify recombinant protein. The eluted fractions exhibited a single band of protein with a molecular weight of about 25kDa, which is in close agreement with 25.4 kDa predicted by the cDNA sequence. The biological activity of the purified recombinant tilapia IL-$1\beta$ was tested through its effects on IL-$1\beta$ gene expression, which are known as IL-$1\beta$ inducible genes in mammals and fishes. IL-$1\beta$ gene expression induced by poly I:C, a synthetic double stranded RNA, was also assessed in tilapia head kidney cells. IL-$1\beta$ gene expression was analysed using QPCR (quantitative polymerase chain reaction). The ratio of the indicated gene expression was expressed as the relative mRNA level to $\beta$-actin mRNA level, which is constitutively expressed in macrophages. Consequently, head kidney cells incubated for three hours with rIL-$1\beta$(10, 2, 1 $\mu{g}$/ml) showed a dose dependent increase in IL-$1\beta$ mRNA levels and 1 $\mu{g}$/ml of poly I:C was also able to induce IL-$1\beta$ gene expression in head kidney in tilapia.

인체지방유래 간질세포의 부착 및 연골분화유도를 위한 PLGA 지지체의 플라즈마 처리 효과 (The Effect of the Plasma Treatment on PLGA Scaffold for Adhesion and Chondrogenic Differentiation of Human Adipose-derived Stromal Cells)

  • 동춘희;전영준;조현미;오득영;한동근;이종원;안상태
    • Archives of Plastic Surgery
    • /
    • 제33권1호
    • /
    • pp.46-52
    • /
    • 2006
  • High-density micromass culture was needed to take three dimensions culture with ASCs(adipose derived stromal cells) and chondrogenesis. However, the synthetic polymer has hydrophobic character and low affinity to cells and other biomolecules. Therefore, the surface modification without changes of physical and chemical properties is necessary for more suitable condition to cells and biomolecules. This study was performed to investigate the effect of surface modification of poly (lactic-co-glycolic acid)(PLGA) scaffold by plasma treatment (P(+)) on the adhesion, proliferation and chondrogenesis of ASCs, and not plasma treatment (P(-)). ASCs were isolated from human subcutaneous adipose tissue obtained by lipectomy and liposuction. At 1 hour 30 minutes and 3days after cell seeding onto the P(-) group and the P(+) group, total DNA amount of attached and proliferated ASCs markedly increased in the P(+) group (p < 0.05). The changes of the actin under confocal microscope were done for evaluation of cellular affinity, at 1 hour 30 minutes, the shape of the cells was spherical form in all group. At 3rd day, the shape of the cells was fiber network form and finely arranged in P(+) group rather than in P(-) group. RT-PCR analysis of cartilage-specific type II collagen and link protein were expressed in 1, 2 weeks of induction. Amount of Glycoaminoglycan (GAG) markedly increased in P(+) group(p < 0.05). In a week, extracellular matrix was not observed in the Alcian blue and Safranin O staining. However in 2 weeks, it was observed that sulfated proteoglycan increased in P(+) group rather than in P(-) group. In conclusion, we recognized that plasma treatment of PLGA scaffold could increase the hydrophilic property of cells, and provide suitable environment for high-density micromass culture to chondrogenesis

Role of TGF-β1/SMADs signalling pathway in resveratrol-induced reduction of extracellular matrix deposition by dexamethasone-treated human trabecular meshwork cells

  • Amy Suzana Abu Bakar;Norhafiza Razali;Renu Agarwal;Igor Iezhitsa;Maxim A. Perfilev;Pavel M. Vassiliev
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권4호
    • /
    • pp.345-359
    • /
    • 2024
  • Deposition of extracellular matrix (ECM) in the trabecular meshwork (TM) increases aqueous humour outflow resistance leading to elevation of intraocular pressure (IOP) in primary open-angle glaucoma, which remains the only modifiable risk factor. Resveratrol has been shown to counteract the steroid-induced increase in IOP and increase the TM expression of ECM proteolytic enzymes; however, its effects on the deposition of ECM components by TM and its associated pathways, such as TGF-β-SMAD signalling remain uncertain. This study, therefore, explored the effects of trans-resveratrol on the expression of ECM components, SMAD signalling molecules, plasminogen activator inhibitor-1 and tissue plasminogen activator in dexamethasone-treated human TM cells (HTMCs). We also studied the nature of molecular interaction of trans-resveratrol with SMAD4 domains using ensemble docking. Treatment of HTMCs with 12.5 µM trans-resveratrol downregulated the dexamethasone-induced increase in collagen, fibronectin and α-smooth muscle actin at gene and protein levels through downregulation of TGF-β1, SMAD4, and upregulation of SMAD7. Downregulation of TGF-β1 signalling by trans-resveratrol could be attributed to its effect on the transcriptional activity due to high affinity for the MH2 domain of SMAD4. These effects may contribute to resveratrol's IOP-lowering properties by reducing ECM deposition and enhancing aqueous humour outflow in the TM.