• Title/Summary/Keyword: Acrylonitrile butadiene styrene copolymer (ABS)

Search Result 13, Processing Time 0.019 seconds

Study on Structural Strength and Application of Composite Material on Microplastic Collecting Device (휴대형 미세플라스틱 수거 장비 경량화 부품 설계 및 구조강도 평가)

  • Myeong-Kyu, Kim;Hyoung-Seock, Seo;Hui-Seung, Park;Sang-Ho, Kim
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.447-455
    • /
    • 2022
  • Currently, the problem of pollution of the marine environment by microplastics is emerging seriously internationally. In this study, to develop a lightweight portable microplastic collection device, the types and number of microplastics in 21 coastal areas nationwide in Korea were investigated. And CFRP (Carbon Fiber Reinforced Plastic), GFRP (Glass Fiber Reinforced Plastic), ABS (Acrylonitrile Butadiene Styrene copolymer) and aluminum were applied for design and analysis of microplastic collection device to have the durability, corrosion resistance and lightweight. As a result of sample collection and classification from the shore, it was confirmed that microplastics were distributed the most in Hamdeok beach, and the polystyrene was found to be mainly distributed microplastics. Particle information through coastal field survey and CFD (Computational Fluid Dynamics) analysis were used to analyze the flow rate and distribution of particles such as sand and impurities, which were applied to the structural analysis of the cyclone device using the finite element method. As a result of structural analysis considering the particle impact inside the cyclone device, the structural safety was examined as remarkable in the order of CFRP, GFRP, aluminum, and ABS. In the view of weight reduction, CFRP could be reduced in weight by 53%, GFRP by 47%, and ABS by 61% compared to aluminum for the cyclone device.

Improvement of a Head Part of 'Chargable Electric Weeder' ('충전식 전기예초기' 혜드 부분의 개선)

  • Oh, Se-Hun;Shim, Jae-Hyeon;Nam, Won-Ki
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • v.11 no.1
    • /
    • pp.31-34
    • /
    • 2006
  • Purposes of this research are convenience of manufacture, quality sophistication and reduction of a/s' ratio by that improve several shortcomings of existing steel housing The Housing of head is changed existent steel housing to ABS (acrylonitrile butadiene styrene) copolymer housing and its shape is changed. It does not need that paint housing by paint. so We may not care scar at storage or manufacture. The fast work speed and A/S is possible by combining a safety plate and a housing by volt and spring washer. When disjoint head part, there is no damage of safety plate and housing. Noise is disappeared by resonance phenomenon in early rpm at motor moving. When neck part of housing and a middle pipe are connected by drill nasa, the work is easier Also, there is sense of security little more catching motor in housing The improvement accomplished much improvements including light weight of head part.

  • PDF

Fabrication and characterization of disposable golf tees using biodegradable polymer through 3D printing

  • Jihyuk Jung;Kwang Sun Huh;Jungho Jae;Kwang Se Lee
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.172-177
    • /
    • 2023
  • Many studies have been conducted on the indiscriminate use of plastic due to the environment problems it has caused all over the world. This problem can be mitigated by using eco-friendly/biodegradable plastics that can be decomposed by microorganisms or enzymes. This study focused on addressing the plastic golf tees that are thrown away at golf courses. In order to replace conventional golf tees (ABS) with a more eco-friendly alternative, this study explored a biodegradable plastic and 3D printing method for producing golf tees. Among the biodegradable plastics, PLA (polylactic acid) was found to be a good candidate as an eco-friendly material because it is biodegradable by microorganisms. Thus, golf tees were prepared by using PLA via 3D printing, and the physical and chemical properties of the tees were evaluated. The amorphous region of PLA was confirmed through XRD. Also, FT-IR showed the unique peak of PLA without impurities. It was confirmed through an optical microscope that the specific surface area and roughness had increased. This structure plays a role in firmly fixing the golf tee when it is inserted into the ground. In addition, it was possible to improve the compressive load compared to ABS golf tees while also decreasing the compressive stretching.