• Title/Summary/Keyword: Acrylic coatings

Search Result 79, Processing Time 0.022 seconds

Anti-Corrosion Characteristics of Steel Structures with Polyaniline Anti-Corrosive Coatings (강 구조물에 대한 폴리아닐린 함유도료의 방청특성)

  • Song, Min-Kyung;Kong, Seung-Dae;Oh, Eun-Ha;Yoon, Hun-Cheol;Kim, Yoon-Shin;Im, Ho-Sub
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.236-246
    • /
    • 2010
  • In preparative anti-corrosive coating experiments, polyaniline was obtained by reacting an oxidizing agent with the monomer aniline. Further, the primer coating was prepared using a variety of widely-used materials such as urethane resin. For the top coating, epoxy resin and acrylic urethane resin were used. Characteristics of the coatings were assessed according to KS and ASTM specifications, and the structure of the polyaniline was characterized using FT-IR and TGA. For analysis of anti-corrosive properties in salt-spray experiments, measurements of the oxidation state of iron and surface atomic analysis were conducted using XPS and SEM-EDX. Unlike general anti-corrosive coatings which exhibit anti-corrosive effects only as a primer coating, the anti-corrosive coatings using polyaniline as the anti-corrosive pigment showed a marked synergistic effect with the top coatings. In other words, the top coatings not only produce a fine view effect, but also increase, through interaction with the primer coatings, the resistance to diffusion of corrosive factors from the external environment. It was also found that, unlike the heavy metal oxide-forming layer of the passive barrier alone, the polyaniline anti-corrosive pigment oxidized iron at the interface with the iron substrate to form a passive barrier in the oxidic layer, and itself formed a potential barrier layer with anti-corrosive factors from the external environment. Although the passive layer was damaged, the damaged area did not become completely oxidized iron; on the contrary, it showed a tendency to reduction. This can be interpreted such that a passive layer is formed again on the damaged area, and that at the same time there is a tendency to self-healing.

The Effects of PCM Capsule Sizes on the Properties of Acrylic Coatings (PCM 캡슐의 크기가 아크릴 코팅의 물성에 미치는 영향)

  • Hur, Soon-Ryoung;Lee, Sung-Goo;Choi, Kil-Yeong;Lee, Jae Heung;Hong, Geun-Hye;Kim, Hyung-Joong
    • Journal of Adhesion and Interface
    • /
    • v.6 no.1
    • /
    • pp.11-18
    • /
    • 2005
  • The capsules were prepared from a phase change material (PCM) of octadecane as a core material and melamine formaldehyde resin as a shell material. The PCM capsule size was varied in the range of $3{\sim}25{\mu}m$. The core contents and sizes of the PCM capsule, were determined by DSC and SEM, respectively. An acrylic coating material which contains butyl acrylate (BA), methyl metacrylate (MMA) and acrylic acid (AA) were synthesized by emulsion polymerization. The films were prepared from the acrylic emulsion and PCM capsules which have various capsule sizes. From the results of SEM experiment, it was observed that the PCM capsules were well dispersed inside the film and the surface of the film became less rough when the PCM capsule size was small. The swelling ratio of the films were not significantly affected by the PCM capsule size. However, the tensile strength and elongation of the films were greatly decreased with increasing the PCM capsule size.

  • PDF

A study on Mechanical Properties of Acrylic-casein Hybrid Resins for Surface Protection (표면 보호용 수용성 Acrylic-casein Hybrid Resin의 합성 및 기계적 물성에 관한 연구)

  • Lee, Joo-Youb;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.618-625
    • /
    • 2012
  • In this study, prepared synthesis waterborne acrylic resin and water soluble milk casein resin. And than extent of casein contents in acrylic resin. We measured property of these samples by Lamb leather which is coated by acrylic-casein resins. According to measure data for solvent resistance, WAR resin and Hybrid resins had good property. Among this result knew that increase of casein constant did not influence to big change of hybrid resin property. As test of tensile strength, WAR had lowest strength($1.399kg_f/mm^2$) and WAC-3 had highest strength($1.426kg_f/mm^2$). Also we knew that best property of abrasion was WAC-3(69.774 mg.loss). In elongation case, WAR had best property(820%) in this experiment.

Laboratory Evaluation of Select Methods of Corrosion Prevention in Reinforced Concrete Bridges

  • Pritzl, Matthew D.;Tabatabai, Habib;Ghorbanpoor, Al
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.201-212
    • /
    • 2014
  • Sixteen reinforced concrete laboratory specimens were used to evaluate a number of corrosion prevention methods under an accelerated (6 months) testing program. The use of galvanic thermal sprayed zinc, galvanic embedded anodes, a tri-silane sealer, an acrylic coating, and an epoxy/polyurethane coating was evaluated. The specimens received various treatments prior to exposure to accelerated corrosion. The performance of the treatments was evaluated with respect to corrosion currents, chloride ingress, extent of cracking, severity of rust staining, and visual inspection of the reinforcing steel after the conclusion of testing and dissection. Results indicated that the tri-silane sealer, the conjoint use of galvanic thermal sprayed zinc and epoxy/polyurethane coating, the epoxy/polyurethane coating, and acrylic coating performed better than the other methods tested. Higher chloride concentrations were measured in the vicinity of embedded zinc anodes.

Effect of Plasma Polymerization Coating of CNTs on the Tensile Strength of Pei/Cnt Composites

  • Song, K.C.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.6 no.4
    • /
    • pp.7-11
    • /
    • 2005
  • Multi-walled carbon nanotubes (CNTs), which were purified by etching in 25% $H_2SO_4/HNO_3$ solution at $60^{\circ}C$ for 2 h, were modified via plasma polymerization coating of acrylic acid, allylamine or acetylene, and then utilized to prepare PEI/CNT composites. First, plasma polymerization conditions were optimized by measuring the solvent resistance of coatings in THF, chloroform and NMP, and the tensile strength of PEI/CNT (0.5%) composites as a function of plasma power (20~50 W) and monomer pressure (20~50 mTorr). The tensile strength of PEI/CNT composites was further evaluated as a function of CNT loading (0.2, 0.5 and 1%). Finally, FT-IR was utilized to provide a better understanding of the improved tensile properties of PEI/CNT composites via plasma polymerization coating of CNTs. Plasma polymerization of acrylic acid greatly enhanced the tensile strength of PEI/CNT composites, as did allylamine but to a lesser degree, while acetylene plasma polymerization coating decreased tensile strength.

  • PDF

An Application of Acrylic/Polyisocyanate Network Polymers to The High Solid Coatings (아크릴/폴리이소시아네이트 망상구조 폴리머의 하이솔리드 도료에의 적용)

  • Choi, Yong-Ho;Hwang, Kyu-Hyun;Kim, Dae-Won;Park, Hong-Soo;Kim, Tae-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • Quater polymer(MBHA) containing two types of acrylic functional group, acetoacetoxyethyl methacrylate(AAM) and 2-hydroxyethyl acrylate was prepared. Then, the MBHA was blended with polyisocyanate type Desmodur IL as a curing agent. Thereafter the mixture was cured at room temperature to get high solid acrylic/polyisocyanate. The MBHA was synthesized at $150^{\circ}C$ for 6 hours typically, and the final conversion reached 87-88%. Lowering Tg and increasing AAM amount in the MBHA resulted in high value of conversion. There was no difference in conversion with the variations of OH values. From the results of physical property tests, MIHS coating was proved to be a good automotive top-coating material.

Physical Properties of UV curable coating on plastic (플라스틱용 자외선경화형 도료의 물성연구)

  • 김일재;문명준
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.3
    • /
    • pp.61-80
    • /
    • 1998
  • To investigate in influence of photosensitizer used with benzophenone(BP) in the curing rate and physical properties of UV curable hard coating on plastic, we prepared UV curable clear and pigmented coatings with DEA, DMA, NPM and TEA as photosensitizer, respectively. The curing rate calculated from the decrease of the absorbance of acrylic double bond measured by FT-IR spectroscopy increased s follows; DEA>DMA>NPM>TEA. this order could be explained by the reactivity of diethylamino group of DEA and the ease of formation of activated complex between BP and photosensitizer during the curing process. In UV curable pigmented coatings, the order of curing rate increased as follows; DEA>DMA>TEA>NPM. It was found that the curing rate of the pigmented coating can be increased by light scattering of TiO$_2$. The hardness of coating film cured by photosensitization of DEA and DMA is higher than other photosensitizers due to the crosslinking reaction of DEA and DMA radical bound to polymer backbone.

  • PDF

Interaction of Beam and Coated Metals at High Power Continuous Irradiation (코팅된 시편과 레이저 빔과의 상호 작용 연구)

  • Kim, Yong-Hyeon;Baek, Won-Kye;Sin, Wan-Soon;Yoh, Jai-Ick
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.974-978
    • /
    • 2011
  • The beam-matter interaction with various coating effects has received continued attention in the high power laser community. Previous works suggest that coatings promote target damage when compared to beaming on uncoated surface. Three types of paint coatings(Acrylic urethane, Silicone alkyd and Stealth blend) and a water coat on metals(Al, Ti and STS) are irradiated with a $CO_2$ laser. Both strain and temperature measurements are provided for assessing the instantaneous response characteristics of each coating on different metals. A selective combination of surface coats with metals has proven effective in either preventing or enhancing damage, both thermal and mechanical, associated with focused beaming on a target.

The Influence of Hydrotalcite Intercalated with Benzoate on UV Stability of Acrylic Coating

  • Nguyen, Thuy Duong;Nguyen, Anh Son;Thai, Thu Thuy;Pham, Gia Vu;To, Thi Xuan Hang;Olivier, Marie-Georges
    • Corrosion Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.16-22
    • /
    • 2020
  • It is important to realize that benzoate was intercalated into hydrotalcite (HTC-Bz) by the co-precipitation method. In this case, acrylic coating with 0.5 wt% HTC-Bz was deposited on carbon steel using the spin coating method. Next, the HTC-Bz structure was characterized by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). In fact, an ultraviolet vision spectroscopy (UV-Vis) was used to determine the benzoate content in HTC-Bz, and the UV absorption ability of HTC-Bz. Using electrochemical techniques, water contact angle measurement, and thermal-gravimetric analysis, we compared the protective properties before and after QUV test, hydrophobicity and the thermal stability of acrylic coating containing HTC-Bz. The obtained results showed that HTC-Bz with a plate-like structure was successfully synthesized; benzoate was intercalated into the interlayer of hydrotalcite with a concentration of 28 wt%. Additionally, it was noted that HTC-Bz has an UV absorption peak at 225 nm. In conclusion, the addition of HTC-Bz enhanced the UV stability, hydrophobicity and the thermal stability of acrylic coating.

Synthesis of Silicone/Acrylic Resins for Super-Weatherable Coatings (초내후성 도료용 실리콘/아크릴수지의 합성)

  • Kim, Seong-Kil;Choi, Yong-Ho;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.171-177
    • /
    • 1999
  • The objectives of this study is to investigate the optimum reaction conditions and to identify the product formula in the synthesis of a silicone/acrylic resin that curing in moisture at room temperature. By the addition polymerization of monomers, n-butyl acrylate, methyl methacrylate, n-butyl methacrylate, and 3-methacryloxypropyltrimethoxysilane. a quarter polymer was obtained. Among various initiators investigated in this study, 2.2'-azobisisobutyronitrille was found to be the most suitable initiator. The optimum reaction conditions found in this study are 70 wt% of initial solvent amount, 120 minutes of dropping time, 3 times of initiator addition, $82{\sim}105^{\circ}C$ of reaction temperature, and 8 hrs of reaction time. Also, number average molecular weight of $11700{\sim}33100$ and molecular weight distribution of $1.81{\sim}3.44$ were obtained.