• Title/Summary/Keyword: Acrylic acid

Search Result 557, Processing Time 0.027 seconds

Improved adsorption performance of heavy metals by surface modification of polypropylene/polyethylene media through oxygen plasma and acrylic acid

  • Hong, Jeongmin;Lee, Seungwoo;Ko, Dongah;Gwon, Eunmi;Hwang, Yuhoon
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.231-235
    • /
    • 2020
  • Industrialization and modern developments have led to an influx of toxic heavy metals into the aquatic environment, and the accumulation of heavy metals has serious adverse effects on humans. Among the various heavy metal treatment methods, adsorption is very useful and frequently used. Plastic materials, such as polypropylene and polyethylene, have been widely used as filter media due to their mechanical and chemical stability. However, the surface of plastic material is inert and therefore the adsorption capability of heavy metals is very limited. In this study, granular media and fiber media composed of polypropylene and polyethylene are used, and the surface modification was conducted in order to increase adsorption capability toward heavy metals. Oxygen plasma generated hydroxyl groups on the surface of the media to activate the surface, and then acrylic acid was synthesized on the surface. The grafted carboxyl group was confirmed by FT-IR and SEM. Heavy metal adsorption capability of pristine and surface modified adsorbents was also evaluated. Overall, heavy metal adsorption capability was increased by surface modification due to electrostatic interaction between the carboxyl groups and heavy metal ions. Fibrous PP/PE showed lower improvement compared to granular PP media because pore blockage occurred by the surface modification step, thereby inhibiting mass transfer.

Preparation of Mucoadhesive Chitosan-Poly(acrylic acid) Microspheres by Interpolymer Complexation and Solvent Evaporation Method I

  • Cho, Sang-Min;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.2
    • /
    • pp.95-99
    • /
    • 2005
  • Mucoadhesive microspheres were prepared by interpolymer complexation of chitosan with poly(acrylic acid) (PAA) and solvent evaporation method to increase gastric residence time. The chitosan-PAA complex formation was confirmed by differential scanning calorimetry and swelling study. The DSC thermogram of chitosan-PAA microspheres showed two exothermic peaks for the decomposition of chitosan and PAA. The swelling ratio of the chitosan-PAA microspheres was dependent on the pH of the medium. The swelling ratio was higher at pH 2.0 than at neutral pH. The results indicated that the microspheres were formed by electrostatic interaction between the carboxyl groups of PAA and the amine groups of chitosan. The effect of various process parameters on the formation and morphology of microspheres was investigated. The best microspheres were obtained when 1.5% of the high molecular weight chitosan and 0.3% of PAA were used as an internal phase. The optimum internal phase volume was 7%. The com oil was used as the external phase of emulsion, and span 80 was used as the surfactant. The prepared microspheres had spherical shape.

Synthesis of P(PEGMA-co-PBMA) microgels by Precipitation Polymerization in Polymer Solution (고분자 용액에서 침점중합에 의한 P(PEGMA-co-PBMA) 마이크로젤의 합성)

  • Cho, Suk-Hyung;Kim, Young-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.852-856
    • /
    • 2009
  • Poly(ethyleneglycol methacrylate-co-benzyl methacrylate) (P(PEGMA-co-BMA)) microgel was prepared by precipitation copolymerization of PEGMA and benzyl methacrylate in poly(acrylic acid)/ethanol solution. The microgels with various sizes were obtained by changing the concentration of poly(acrylic acid), monomer and nature of solvents. The particle size of P(PECMA-co-BMA) microgels was decreased with increasing the concentration of poly(acrylic acid) and increased with that of monomer. By increasing solubility parameter of solvents, the particle size was inecreased. The size of P(PEGMA-co-BMA) microgels was controlled by experimental conditions from $0.1{\mu}m$ to $0.35{\mu}m$.

In vitro Mucoadhesion Evaluation of Poly(Acrylic Acid) Hydrogel Crosslinked with Sucrose (백당으로 가교된 폴리아크릴산 하이드로겔의 In vitro 점막부착력 평가)

  • Lee, Jae-Hwi;Kim, Sun-Young;Lee, Eun-Seok;Lee, Min-Suk;Kim, Hyung-Soo;Choi, Young Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.2
    • /
    • pp.83-87
    • /
    • 2006
  • Poly(acrylic acid) (PAA) was identified to possess good mucoadhesive properties ensuring its application to extend the retention times of the formulations at the oral cavity, intended route of administration using the polymer. In the noncross-linked state, PAA will swell and become eroded owing to the presence of salivary flow from the site of application. The formation of cross-links between the polymer chains will allow swelling but prevents the erosion of the dosage form. In the current study, cross-linking was achieved by esterification of the PAA chains with sucrose. The density of crosslinking was modified by changing sucrose concentration and the duration of cure time. The cross-linking density of the polymer hydrogel was assessed by equilibrium swelling studies. The mucoadhesion testing method allowed a comparative study of the hydrogels prepared. An inverse relationship between equilibrium swelling and peak detachment force showed that increased PAA chain density per unit area enhanced the mucoadhesive interaction.

Syntheses and Surface Active Properties of Amphoteric Surfactant(3);Syntheses of Carboxylated Amides from Imidazoline (양쪽성계면활성제의 유도체합성 및 계면성에 관한 연구(제3보);이미다졸린으로부터 유도된 카르복시화 아미드류의 합성)

  • Ro, Y.C.;Kim, H.S.;Nam, K.D.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.113-120
    • /
    • 1994
  • Amphoteric surfactants were synthesized by the cyclization of 1-(2-hydroxyethyl)-2-undecyl-2-imidazoline [I] with acrylic acid ethyl ester. Compound [I] was easily hydrolyzed with water, especially in the presence of a alkali, to afford amidoamines. After [I] was hydrolyzed, the reaction mixture was allowed to react with acrylic acid ethyl ester and then soapoinfied. Only sodium salts of N- -(2-carboxyethyl)-N'-(2-hydroxyethyl)aminoethyl]dodecanoyl amide[III] was obtained. However, when the reacton of [I] with acrylic acid ethyl ester was carried out in the presence of water, followed by soapnification, ring cleavage of [I] occurred at 2, 3 position, different from hydrolysis of [I] where the cleavage occurred at 1, 2 position, to give sodium salts of N-[N'-(2-carboxyethyl)aminoethyl]-N-(2-hydroxyethyl)dodecanoyl amide [IV] and N-[N', N'-bis(2-carboxyethyl)aminoethyl]-N(2-hydroxyethyl)dodecanoyl amide [V] as main products.

Synthesis of Multifunctional Polypropylene-g-(acrylic acid/styrene) Fibrous Ion Exchanger by Electron Beam and Adsorption Properties of Lithum Ion (전자선 조사에 의한 다관능 Polypropylene-g-(acrylic acid/styrene) 섬유상 이온교환체의 합성과 리튬이온 흡착특성)

  • 황택성;박진원;이재천
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.763-769
    • /
    • 2000
  • The multifunctional cation exchangers, sulfonated polypropylene-g-(acrylic acid/styrene) [PP-g-(AAc/Sty)] were synthesized by the irradiational grafting of AAc and Sty onto PP staple fabric with electron beam accelerator and its subsequent sulfonation. The highest degree of grafting obtained was 190% at a monomer mixture of 30 vol% AAc: 70 vol% Sty and a solvent mixture of 30 vol% water : 70 vol% methanol and the degree of grafting decreased with an increase of the AAc content in the monomer mixture at constant solvent content. Maximum ion exchange capacity of the copolymer was 4.6 meq/g. The Li$^{+}$ adsorption ability of the copolymer synthesized in the study was the best among PP-g- AAc, sulfonated PP-g-Sty, and sulfonated PP-g-(AAc/Sty).).

  • PDF

Novel Coloration of Cotton Fabrics by UV-induced Phtografting of Reactive Black 5 and Acrylic acid

  • Dong, Yuanyuan;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.23 no.1
    • /
    • pp.11-20
    • /
    • 2011
  • UV-induced surface copolymerization has been widely applied as a simple, useful and versatile approach to improve the surface properties of textiles. C.I. Reactive Black 5 and acrylic acid (AA) were continuously grafted onto cotton by UV irradiation. The photografting may occur by the copolymerization of AA with the vinylsulfone reactive dye which photochemically converted from the bissulfatoethylsulfone reactive group. The graft yield and color yield were influenced by UV energy, the dye and photoinitiator concentrations, a mole ratio of AA to dye, and pH. The coloration of cotton fabrics having a K/S of 7.0 can be obtained under a UV irradiation energy of 15$J/cm^2$ by the photografting of an aqueous alkaline formulation of 6% dye concentration containing 3% photoinitiator concentration on the weight of monomers, and a 3:1 mole ratio addition of AA to the dye. Furthermore, the photochemically dyed cotton fabrics showed comparable washing (staining) and rubbing fastness to conventional reactive dyeing method except shade change in the wash fastness and light fastness.

Drug Release Behavior of Poly($\varepsilon$-caprolactone )-b-Poly( acrylic acid) Shell Crosslinked Micelles below the Critical Micelle Concentration

  • Hong Sung Woo;Kim Keon Hyeong;Huh June;Ahn Cheol-Hee;Jo Won Ho
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.397-402
    • /
    • 2005
  • To explore the potential of shell crosslinked micelle (SCM) as a drug carrier, the drug release behavior of poly($\varepsilon$-caprolactone)-b-poly(acrylic acid) (PCL-b-PAA) SCMs was investigated. PCL-b-PAA was synthesized by ring opening polymerization of $\varepsilon$-caprolactone and atom transfer radical polymerization of tert-butyl acrylate, followed by selective hydrolysis of tert-butyl ester groups to acrylic acid groups. The resulting amphiphilic polymer was used to prepare SCMs by crosslinking of PAA corona via amidation chemistry. The drug release behavior of the SCMs was studied, using pyrene as a model drug, and was compared with that of non-crosslinked micelles, especially below the critical micelle concentration (CMC). When the shell layers were crosslinked, the drug release behavior of the SCMs was successfully modulated at a controlled rate compared with that of the non-crosslinked micelles, which showed a burst release of drug within a short time.

A Study on the Inverse Emulsion Polymerization of Anionic Arcrylamide and Acrylic Acid (음이온성 아크릴아미드와 아크릴산의 역유화 중합에 관한 연구)

  • Lee, Ki-Chang;Choi, Hee-Chun;Choi, Bong-Jong;Lee, Kwang-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 1989
  • To developed new process for obtaining maximum molecular weight of anionic acrylamide and acrylic acid copolymer by inverse emulsion polymerization. Concentration of initiator, reducing agent, surfactant and mole ratio of acrylamide-acrylic acid were studied for the process. Semi-batch processes with method of redox, control of reaction temperature, feeding method of monomer and reaction time, was suitable for maximum molecular weight of P(AMAC) from this process obtained $3.09\;{\time}\;10^6({\bar{M}}n.)$ and $4.41\;{\time}\;10^6({\bar{M}}w.)$ in molecular weight measured by the intrinsic viscosity method. inverse emulsion polymerization mechanism of P(AMAC) does not followed the Smith-Ewart and Medvedev theory, but selected for concentration of initiator, reducing agent, surfactant, water solubility of monomer.

Excimer Studies on Copolymer of Styrene-Acrylic Acid (스티렌-아크릴산 공중합체의 들뜬이합체 연구)

  • Lee, Yeon Hui;Gang, Seong Cheol;Kim, Gang Jin
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.91-97
    • /
    • 1990
  • Copolymers (PSAA) of styrene-acrylic acid were prepared through a free radical mechanism using azobisisobutyronitrile as an initiator. The fluorescence emission spectra of PSAA and the styrene-acrylic acid copolymers complexed with $Eu^{3+}$ (PSAA-Eu) were studied. The excimer fluorescence, centered at 330 nm, increases when the styrene mole fraction increases. Since the excimer fluorescence intensities of PSAA-EU, PSAA-Tb and PSAA-Eu-Tb were almost same, it appears that the kind of metal ion does not affect the excimer fluorescence. An interpretation of the results which takes into account the statistical composition of the copolymers, indicates that energy migration can occur from isolated to non-isolated styrene units.

  • PDF