• 제목/요약/키워드: Across APB-ADM

검색결과 2건 처리시간 0.02초

An Electrode Configuration for Recording Muscle Motor Evoked Potentials in the Upper Extremities during Intraoperative Neurophysiological Monitoring

  • Choi, Young-Doo;Jin, Seung-Hyun;Kim, Chi-Heon;Kwak, Gil Ho;Kim, Bo Eun;Chung, Chun Kee
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권4호
    • /
    • pp.475-480
    • /
    • 2017
  • Objective : The main aim of the present study is to examine the electrode configurations used to record the muscle motor evoked potential (mMEP) in the upper extremities during surgery with the goal of producing a high and stable mMEP signal, in particular among the abductor pollicis brevis (APB), abductor digiti minimi (ADM), and across the APB-ADM muscles, which have been widely used for the mMEP in the upper extremities. Methods : Thirty right-handed patients were recruited in this prospective study. No patients showed any adverse events in their mMEP signals of the upper extremities during surgery. The mMEPs were recorded independently from the signals for the APB and ADM and for those across the APB-ADM. Results : The mMEP amplitude from across the APB-ADM was statistically higher than those recorded from the APB and ADM muscles. Moreover, the coefficient of variation of the mMEP amplitude from across the APB-ADM was smaller than those of mMEP amplitude recorded from the APB and ADM muscles. Conclusion : The mMEP from across the APB-ADM muscles showed a high yield with high stability compared to those in each case from the APB and ADM muscles. The configuration across the APB-ADM muscles would be best for mMEP recordings from the upper extremities for intraoperative neurophysiological monitoring purposes.

Applicability of the digital instrument to improve the reproducibility of motor unit number index

  • Ahn, Suk-Won
    • Annals of Clinical Neurophysiology
    • /
    • 제20권1호
    • /
    • pp.26-30
    • /
    • 2018
  • Background: The motor unit number index (MUNIX) and motor unit size index (MUSIX) refer to the electrophysiological measurement of the motor units using the surface electromyographic interference pattern (SIP) recorded during graded muscle contraction. In order to improve the reliability and reproducibility of MUNIX by the systematization of the graded muscle contractions, we applied a digital hand instrument to the procedure of recording SIP signals. Methods: We tested the applicability of the digital instrument in the MUNIX technique by assessing the mean values and the reproducibility of the MUNIX involving the abductor pollicis brevis (APB) and the abductor digiti minimi (ADM) muscles in 30 healthy adults. Results: The digital dynamometer was successfully applied to the MUNIX measurements of the APB and ADM muscles, and showed high reproducibility across trials. Conclusions: Application of the digital instrument would be useful in improving the reliability and reproducibility of MUNIX.