• Title/Summary/Keyword: Acrosomal tubule

Search Result 3, Processing Time 0.017 seconds

Fine Structural Investigations of Fertilization Envelopes and Acrosomal Reaction in Urechis unicinctus (Urechis unicinctus 수정막과 첨체반응에 대한 미세구조적 관찰)

  • Kwon, Hyuk-Jae;Shin, Kil-Sang;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.30 no.1
    • /
    • pp.61-72
    • /
    • 2000
  • Three fertilization envelopes (FE) have been observed after the artificial insemination of U. unicinctus oocytes. The substances of the first fertilization envelope, which is an effective barrier against excessive sperm, come mainly from the surface coat of the oocyte. The secretions of the cortical granules take part in formation of the 2nd fertilization envelope. Histologically, the 3rd fertilization envelope is not amorphous as seen under light microscope, but contains numerous panicles under electron microscope, which would be contributed to harden the envelope by 60 min after the fertilization. With the substantial similarity between the 1st fertilization envelope and the surface coat of the oocyte, and the coincidence of retraction of microvilli and the formation of the 1st fertilization envelope, it is suggested that the microvilli contain the sperm receptors in U. unicinctus. Some granular substances from the distal part of the acrosome diffuse on the surface coat of the oocyte while the acrosomal tubules penetrate into the surface coat. The acrosomal tubules arise from the proximal part of the acrosome and pass through the acrosomal lumen.

  • PDF

Seminiferous Epithelium Cycle in the Korea Squirrel, Tamias sibiricus

  • Jung Tae-Dong;Lee Jung-Hun
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.275-283
    • /
    • 2004
  • The annual changes in testis weight and diameter of seminiferous tubules, and the seminiferous epithelium cycle of Tamias sibiricus were studied by light microscope. Testis weight and diameter of seminiferous tubule are significantly increased from January to July, and decreased rapidly to the size from August to December. Spermatogenesis occurs from January to July, and spermatocytogenesis are produced from August to December. The cycle of the seminiferous epithelium was divided into 12 stages during the development of spermatids as a changes of the nucleus and acrosomal structure, presence and/or absence of residual body, appearance and/or absence of sperm tail and meiotic figure and spermiation. The dark type spermatogonia (Ad) are appeared in all stages (I ~ XII), and the spermatids of step 10 are observed at I, II, X and XII stages. The spermatids of step 11 are appeared in III and IV stages, only the step 12 spermatid observed in V stage.

  • PDF

Spermiogenesis in the Crocidura shantungensis (작은땃쥐(Crocidura shantungensis)의 정자 변태)

  • Jeong, Seung-Don;Lee, Jung-Hun
    • Development and Reproduction
    • /
    • v.11 no.1
    • /
    • pp.31-41
    • /
    • 2007
  • The spermiogenesis of Crocidura shantungensis were studied by electron microscope. All process of spermiogenesis was divided into 11 phases 15 steps, based on the morphological features of the nucleus and cell organelles in cytoplasm of spermatids. The spermatids in Golgi and cap phases were a spherical shape. On the other hand, at the early acrosomal phase they changed into an oval shape, and the tail was created in this phase. In maturation phase, the shapes of spermatid head were thin and longish. Until step 7 the direction of spermatids head turned toward the lumen of the seminiferous tubule. From step 8 to step 15 their heads turned toward the basal lamina. In step 12, the nucleus and acrosome shown maximal elongation. From Step 13 the nucleus of spermatids became flat, simultaneously with flat expansion of the acrosome expanded, and the visible whole lengths of spermatids were tend to be shorten. Spermatid heading which arrived to step 14 was taken the final shape. The nucleus was doing the wedge shape, and the nuclear chromatins condensed completely and homogenized. In the spermiation phase, the spermatids were gradually disconnected from the cytoplasm of the Sertoli cell. In this phase, the acrosome of the spermatids were fully shorten and flat, and the spermatozoa completed the process of heading and the tailing. Considering all the results, the spermiogenesis may be useful information to analyze the differentiation of spermatogenic cells.

  • PDF