• Title/Summary/Keyword: AcrIIA5

Search Result 1, Processing Time 0.177 seconds

Backbone NMR assignments of the anti-CRISPR AcrIIA5 from phages infecting Streptococcus thermophilus

  • An, So Young;Kim, Eun-Hee;Bae, Euiyoung;Suh, Jeong-Yong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.3
    • /
    • pp.70-76
    • /
    • 2020
  • The CRISPR-Cas system provides an adaptive immunity for bacteria and archaea against invading phages or foreign plasmids. In the type II CRISPR-Cas system, a single effector protein Cas9 and a guide RNA form an RNA-guided endonuclease complex that can degrade DNA targets of foreign origin. To avoid the Cas9-mediated destruction, phages evolved anti-CRISPR (Acr) proteins that neutralize the host bacterial immunity by inactivating the CRISPR-Cas system. Here we report the backbone 1H, 15N, and 13C resonance assignments of AcrIIA5 that inhibits the endonuclease activity of type II-A Streptococcus thermophilus Cas9 and also Streptococcus pyogenesis Cas9 using triple resonance nuclear magnetic resonance spectroscopy. The backbone chemical shifts of AcrIIA5 predict a disordered region at the N-terminus, followed by an αββββαβββ fold.