• Title/Summary/Keyword: Acoustical Material

Search Result 166, Processing Time 0.025 seconds

Frequency Domain Equivalent Circuit Identification of Ultrasound Transducer (주파수 영역 측정에 의한 초음파 변환기 등가회로 추정)

  • 전병두;임준석;송준일;성굉모
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.325-328
    • /
    • 2000
  • 초음파 변환기의 정합을 위해서는 초음파 변환기의 등가회로 구성이 중요하다. 전통적인 등가회로의 경우 비교적 안정적인 등가회로를 예측하게 해 주지만 초음파변환기 구성에서 일어나는 초음파 변환기 외의 구성품 즉 Backing Material, Acoustic Window Material, Radiation Impedance 등에 의한 부가적인 효과를 모델링하는 데는 한계가 있다. 따라서 좀 더 일반적인 방법으로 초음파 변환기를 모델링하는 방법이 필요하다. 그런 방법의 하나로 주파수 영역 측정에 의한 초음파변환기 등가회로 추정법을 제안한다. 이 방법은 초음파 변환기 제작 시 많이 쓰는 임피던스 분석의 결과를 그대로 사용할 수 있고 또 그것이 없어도 일반 함수발생기와 오실로스코프만으로 측정할 수 있어서 랜덤함수를 발생시키고 이에 대한 출력을 저장해야 데이터를 얻을 수 있는 시간영역 추정법에 대해서 장점을 갖는다.

  • PDF

In-situ Determination of Absorption Coefficients in a Room

  • Suh, Jin-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3E
    • /
    • pp.10-17
    • /
    • 2001
  • The possibility is investigated of determining the diffuse absorption coefficients of the wall surfaces in a real room by minimizing the errors between the measured energy impulse response of a real room and the predicted energy impulse responses obtained from the ray tracing simulation of the room. In other words, this can possibly serve as a basis for "acoustical system identification" in attempting to determine the "best fit" of modelled absorption coefficients to measured energy response data. Algorithms for attempting this were investigated. The algorithms developed for this purpose proved to be rigorous and efficient. Instead of using the ray tracing model to determine the absorption coefficients, the phase image model was used in order to determine the acoustic impedances of wall surfaces. However, the numerical algorithms could not find the correct impedance values, primarily due to the wide range of the acoustic impedance values of any single acoustic material and very long computation time.

  • PDF

Using a Micro-flown device to measure acoustical properties of green roof systems (Micro-flown 장비를 이용한 옥상녹화재료 음향 물성치 실험)

  • Yang, Hong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.870-873
    • /
    • 2014
  • Green roof systems has widely been used on rooftop of buildings by considering environmental benefits in aspects of bio-diversity, storm-water runoff as well as noise reduction. To predict noise reduction effect by green roof systems, it is necessary to measure in-situ acoustical properties of the components by devices enabling in-situ measurements. In this study, Micro-flown, which is the state of the arts device to measure in-situ normalized impedance and absorption coefficient has been used to measure acoustical properties of green roof materials according to different water saturation condition in the materials.

  • PDF

Development of Ultrasonic Transducer for Nondestructive Evaluation of Whole Fruit (과실 비파괴평가용 초음파 변환기 개발)

  • Kim, K.B.;Lee, S.D.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.269-275
    • /
    • 2007
  • In this study, ultrasonic transducers for non-destructive contact measurement of whole fruits were developed. The design parameters for ultrasonic transducer such as acoustical impedance of fruits, kinds of piezoelectric materials, ultrasonic wave frequency, and transducer diameter were investigated. In order to match the acoustical impedance between piezoelectric material and fruit, various materials were fabricated and evaluated. Also to control the sensitivity and bandwidth of the ultrasonic transducer, various backing materials were fabricated and evaluated. Especially, the wear plate of the ultrasonic transducer was designed and fabricated considering the curvature of fruit. The central frequencies of two developed ultrasonic transducers were about 100 kHz and 200 kHz, respectively. With the developed ultrasonic transducers, non-destructive evaluation of the fruit will be possible.

Multi-Termination Technique for the Measurement of Characteristic Impedance and Propagation Constant of Sound Absorbing Materials Using an Impedance Tube

  • Lee, Jong-Hwa;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2E
    • /
    • pp.79-84
    • /
    • 2006
  • Acoustic characteristics of a sound absorbing material can be identified, if the characteristic impedance and propagation constants are known, which have generally been determined experimentally. One easy method determining these two essential parameters is to measure the one dimensional wave characteristics in the impedance tube. In th udy, the effects of backing conditions on the impedance tube measurement have been examined using several pairs of generally used end conditions. The results showed that the measured values are similar for most pairs of end conditions: however, it was observed that the measured characteristic impedance for different thickness did not agree well for some pairs. In this work, the multi termination method, using three or more known backing con ns, was suggested to reduce such random errors, which are mostly caused by the test procedure. Employing three terminations as a set, comprised of a rigid end, an end with porous material, and an end with a backing cavity, it was demonstrated that improved measured results could be obtained for an open cell PU foam varying widely with three different thicknesses.

Thermal Sensitivity of the Bean Curd by Ultrasonic Irradiation (초음파 조사에 의한 두부의 열 감도)

  • 조문재;윤용현;부유천;김용태
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.503-513
    • /
    • 2004
  • In this paper, the thermal sensitivity, i .e. the temperature rise per unit acoustic power, was newly defined and proposed as a performance parameter of a tissue mimicking material. Eatable tofu (bean curd) manufactured by a factory was selected as a sample material for the experiment. The temperature changes were measured not only with the variation of ultrasonic irradiation time, acoustic power, depth from the sample surface. and the distance from the source transducer while adjusting the frequency to 8 MHz but also with the variation of frequency while acoustic power. depth from the sample surface. and the distance from the source transducer keeping constant. As a result of a consideration for the transformation of the measured temperature changes to thermal sensitivities. the thermal sensitivity was found to be sufficient to use as a Performance parameter for tissue mimicking material. The tofu as a tissue mimicking material showed the maximum thermal sensitivity at 10 MHz, as is a significant result to imply the possibility that the thermal sensitivity of real human tissue strong1y depends on the frequency.

Elastic Wave Propagation in Monoclinic System Due to Harmonic Line Load

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.47-52
    • /
    • 1998
  • An analysis of dynamic responses is carried out on monoclinic anisotropic system due to a buried harmonic line source. The load is in the form of a normal stress acting along an arbitrary axis on the plane of symmetry within the orthotropic materials: In case that the line load is acting along the symmetry axis normal to the plane of symmetry, plane wave equation is coupled with verital shear wave and longitudinal wave. However, if the line load is acting along an arbitrary axis normal to the plane of symmetry, plane wave equation is coupled with vertical shear wave, longitudinal wave and horizontal shear wave. We first considered the equation of motion in a reference coordinate system, where the line load is coincident with a symmetry axis of the orthotropic material. Then the equation of motion is transformed into one with respect to general coordinate system with azimuthal angle by using transformation tensor. Plane wave solutions of monoclinic systems are derived for infinite media. Finally complete solutions for the plane harmonic wave are obtained by calculating the inverse of the integral transforms, in which bulk wave poles are avoided by deforming the contour of the integration to the complex plane. Numerical results for examples of orthotropic material belonging to monoclinic symmetry are demonstrated.

  • PDF

Sound Radiation Analysis for Structure Vibration Noise Control of Vehicle Tire under The Action of Random Moving Line Forces (불규칙 이동분포하중을 받는 차량 타이어의 구조 진동소음 제어를 위한 음향방사 해석)

  • Kim Byoung-sam
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.221-224
    • /
    • 2004
  • A theoretical model has been studied to describe the sound radiation analysis for structure vibration noise of vehicle tires under the action of random moving line forces. When a tire is analyzed, it had been modeled as curved beams with distributed springs and dash pots that represent the radial , tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y=0 and to be axially infinite. The curved beam material and elastic foundation are assumed to be lossless Bernoulli-Euler beam theory including a tension force, damping coefficient and stiffness of foundation will be employed. The expression for sound power is integrated numerically and the results examined as a function of Mach number, wave-number ratio and stiffness factor. The experimental investigation for structure vibration noise of vehicle tire under the action of random moving line forces has been made. Based on the Spatial Transformation of Sound Field techniques, the sound power and sound radiation are measured. Results strongly suggest that operation condition in the tire material properties and design factors of the tire govern the sound power and sound radiation characteristics.

  • PDF

An Identification Method for Complex-Valued Material Properties of Piezoelectric Ceramics (압전 세라믹의 복소 재료 정수 규명)

  • Joh, Chee-Young;Seo, Hee-Seon;Kim, Dae-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.83-88
    • /
    • 1995
  • The common practice for the identification of piezoelectric properties is based on the use of immittance of a resonator with a certain geometry and poling direction. In this paper, a new method is suggested to identify the complex-valued piezoelectric material constants. This method Is based on the minimization of differences between the analytical immittance and the experimental measurement of resonator. Non-linear minimization problems are formulated to find out the unknown properties relevant to the resonators. The immittance data used for identification are measured at a number of frequencies which cover the vicinity of resonance frequency and the low frequency region. To illustrate the proposed technique, the complex-valued coefficients are identified for a typical PZT4 ceramic composition.

  • PDF