• 제목/요약/키워드: Acoustic wave velocity

검색결과 188건 처리시간 0.03초

초음파현미경을 이용한 Co 기 초내열 합금 열화재의 비파괴평가 (Nondestructive Evaluation for Thermally Degraded Co-base Superalloy by Scanning Acoustic Microscope)

  • 김정석;송진헌;권숙인;임재생;박익근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.336-341
    • /
    • 2004
  • This research investigates the feasibility of ultrasonic microscope for nondestructive assessment of thermal degradation in artificially aged commercial Co-base superalloy, FSX414. This alloy has been used for high temperature structure applications such as stationary gas turbine blade and nozzle chamber in fossil plant. Microstructural change was found that the fine carbides became coarser and spheroidized in matrix as aging time increased. The leaky surface acoustic wave velocity gradually decreases by a maximum of 4.7% with increasing aging time up to 4,000hours. However, the longitudinal wave velocity has a little change. Also, it has a good correlation between leaky surface acoustic wave velocity and Vickers hardness. Consequently, LSAW can be used to examine the degree of degradation in thermally aged Co-base superalloy.

  • PDF

선 집속 초음파 현미경을 이용한 음탄성효과 측정에 의한 응력 평가 (Stress Evaluation by the Measurement of Acoustoelastic Effect Using a Line-Foucus Acoustic Microscope)

  • Kim, J.O.;Lee, Y.C.
    • 한국정밀공학회지
    • /
    • 제14권10호
    • /
    • pp.119-126
    • /
    • 1997
  • The relationship between the applied stresses and the change of elastic wave velocity has been established based on the acoustoelasticity theory. The non-uniform stress field in a loaded specimen has been evaluated from the surface acoustic wave velocity measured by the line-focus acoustic microscopy with the acoustoelastic constants obtained form a calibration test. The evaluated stresses are in good agreement with the results calculated by finite element method.

  • PDF

표면파의 분산 특성을 이용한 Ni 박막의 두께 측정 (Thickness Measurement of Ni Thin Film Using Dispersion Characteristics of a Surface Acoustic Wave)

  • 박태성;곽동열;박익근;김미소;이승석
    • 비파괴검사학회지
    • /
    • 제34권2호
    • /
    • pp.171-175
    • /
    • 2014
  • 본 연구에서는 박막 표면을 따라 전파하는 표면파의 속도 분산성을 이용하여 박막의 두께를 비파괴적으로 측정할 수 있는 기법을 제안하였다. 표면파의 분산성을 이용하여 박막의 두께를 측정하기 위하여 전자빔증착법(E-beam evaporation)을 이용하여 Si(100) 웨이퍼 위에 니켈의 증착시간을 제어함으로서 두께가 다른 니켈 박막시험편을 제작하였다. 제작된 시험편의 실제 증착된 박막의 두께를 확인하기 위하여 SEM(scanning electron microscope)을 이용하여 박막의 단면사진을 촬영하여 두께를 확인하였다. 그 후에 두께가 다른 시험편에서의 표면파의 속도를 초음파현미경(scanning acoustic microscope)의 V(z) 곡선법을 이용하여 표면파의 속도를 측정하고 실제 측정된 두께와 표면파 속도와의 상관성을 확인하였다. 박막의 두께가 증가함에 따라 표면파의 속도는 감소하는 경향성을 나타내었다. 결론적으로 본 연구에서 제안한 표면파의 속도 분산성을 이용하여 나노 스케일 니켈 박막의 두께를 측정하는 기법이 가능성이 있음을 확인하였다.

전파속도를 알수 없는 재료에서의 AE 발생위치 온라인 측정 (AE source on-line localization on material with unknown acoustic wave propagation velocity)

  • 장경영;이원흠;김달중
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.688-694
    • /
    • 1998
  • The ability to locate the defects in materials is one of the major attrations of the acoustic emission(AE) technique. The most conventional method for planar AE source localization is to place three or more AE sensors on the plate and to determine the source position by measuring the differences in the arrival times of the AE wave at the sensors, which is called as triangulation method. But this method can not be applied in the material of which elastic wave propagtion velocity is not known. In this paper, we propose two methods, vector method and error minimization method, for AE source location on the material with unknown AE wave velocity. In this method, it is not needed to know the propagation velocity previously, that is, we can apply this method to arbitrary material of which properties are not known exactly. Also, in this paper, the robustness to the error in the measurement of time differences are discussed for both methods. Finally, in order to evaluate the actual performances, experiments using a pencil lead break as the AE source were carried out on the aluminum plate.

(Fe1-xCox)89Zr11 비정질 자성막에서의 자기표면탄성파 속도변화(II) (Velocity Change of Magneto Surface Acoustic Wave (MSAW) in (Fe1-xCox)89Zr11 Amorphous Films (II))

  • 김상원
    • 한국재료학회지
    • /
    • 제12권4호
    • /
    • pp.279-282
    • /
    • 2002
  • The effect of field annealing on the velocity changes of magneto surface acoustic wave (MSAW) devices has been investigated for deposited $(Fe_{1-x}Co_x)_{89}Zr_{11}$ (x = 0~1.0) amorphous films. By means of two step field annealing at $195^{\circ}C$ for 10 minute in the magnetic field of 130 Oe, the MSAW device with x=0.4 film among the devices showed the superior velocity change of 0.1 %. This gigantic value was obtained in the DC bias field of 40 Oe at the exciting frequency of 8.7 MHz. It was confirmed that such behavior was due to the variation of differential permeability caused by an optimal stress within the magnetic film.

헥사플루오르프로펜 플라즈마박막을 이용한 표면탄성파발진기 습도센서 (surface acoustic wave oscillator hymidity sensor using hexafluoropropene plasma thin film)

  • 박남천;서은덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1992년도 춘계학술대회 논문집
    • /
    • pp.144-146
    • /
    • 1992
  • Surface acoustic wave(SAW) oscillator offers many attractive features for application to vapor sensors. The perturbation of SAW velocity by the hexafluoropropence plasma polymer thin film has been studied for relative humidity sensing. adsorption of moisture produces rapid aid changes in the properties of the film, resulting in a change in the velocity of surface acoustic waves and, hence, in the frequency of one SAW oscillator. The device used in our experiments have 55 MHZ SAW oscillator fabricated on a LiNbO substrate.

  • PDF

근접음장 음향 홀로그래피를 이용한 평판내의 속도분포 예측 (The reconstruction of Structure Velocity Field Using Nearfield Acoustic Holography)

  • 권오훈;이효근;박윤식
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.251-259
    • /
    • 1994
  • Nearfield acoustic holography is known as a powerful tool to study sound radiation from a structure. In this work, the so called backward propagation of sound pressure field is studied to obtain the structure velocity distribution. The results, which were obtained using FFT algorithms, are presented for a finite plate excited at the frequencies above and below coincidence. These results illustrate the effect of stand-off distance and noise. An optimum cutoff frequency in wavenumber domain was suggested to reduce the effects of evanescent wave in the backward propagation. The experimental results were also included for a plate to demonstrate the effectiveness of the suggested cutoff frequency. The optimum cutoff frequency to exclude the unwanted noise in the process of reconstruction of the velocity field gives the good results in both simulations and experiments.

Role of Am Piezoelectric Crystal Orientation in Solidly Mounted Film Bulk Acoustic Wave Resonators

  • Lee, Si-Hyung;Kang, Sang-Chul;Han, Sang-Chul;Ju, Byung-Kwon;Yoon, Ki-Hyun;Lee, Jeon-Kook
    • 한국세라믹학회지
    • /
    • 제40권4호
    • /
    • pp.393-397
    • /
    • 2003
  • To investigate the effect of AIN c-axis orientation on the resonance performance of film bulk acoustic wave resonators, solidly mounted resonators with crybtallographically different AIN piezoelectric films were prepared by changing only the bottom electrode surface conditions. As increasing the degree of c-axis texturing, the effective electromechanical coupling coefficient ($\kappa$$\_$eff/)$^2$ in resonators increased gradually. The least 4 degree of full width at half maximum in an AIN(002) rocking curve, which corresponds to $\kappa$$^2$$\_$eff/ of above 5%, was measured to be necessary for band pass filter applications in wireless communication system. The longitudinal acoustic wave velocity of AIN films varied with the degree of c-axis texturing. The velocity of highly c-axis textured AIN film was extracted to be about 10200 n/s by mathematical analysis using Matlab.

Ultrasonic Estimation and FE Analysis of Elastic Modulus of Kelvin Foam

  • Kim, Nohyu;Yang, Seungyong
    • 비파괴검사학회지
    • /
    • 제36권1호
    • /
    • pp.9-17
    • /
    • 2016
  • The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

$({Fe_{1-x}}{Co_x})_{89}{Zr_{11}}$비정질 자성 막에서의 자기표면탄성파 속도변화 (I) (Velocity Change of Magneto Surface Acoustic Wave (MSAW) in $({Fe_{1-x}}{Co_x})_{89}{Zr_{11}}$ Amorphous Films (I))

  • 김상원
    • 한국재료학회지
    • /
    • 제11권6호
    • /
    • pp.477-482
    • /
    • 2001
  • 쐐기형 전극 사이에 열처리전 비정질 ($Fe_{1-x}$ $Co_{x}$ )$_{89}$ $Zr_{ 11}$ (x=0~1.0) 자성막이 증착된 MSAW 소자를 구성하고 외부 인가자기장에 의한 MSAW 속도변화율을 조사하였다. 그 결과 MSAW 속도변화율은 직류 인가자기장, 구동주파수, 자성막의 두께 및 조성에 민감하게 의존하였으며, 특히 구동주파수 및 자성막의 두께가 증가할수록 증가함을 확인하였다. 열처리전 시편에서 나타난 최대 속도변화율은 x=0.8에서 얻어진 0.062%였다.

  • PDF