• 제목/요약/키워드: Acoustic variation

검색결과 355건 처리시간 0.025초

시·공간 변동 수중음향 채널에서 CAZAC 코드를 적용한 반송파 주파수 옵셋 보상 기법의 성능평가 (Performance of Carrier Frequency Offset Compensation using CAZAC Code in Time and Spatial Variant Underwater Acoustic Channel)

  • 박지현;배민자;김종주;윤종락
    • 한국정보통신학회논문지
    • /
    • 제20권7호
    • /
    • pp.1229-1236
    • /
    • 2016
  • 수중 음향 다중경로 채널에서 수중음향 통신 시스템의 성능은 채널의 시변적 경계면 상태 변동에 의해 영향을 받는다. 이러한 채널에서 시공간적 변동에 의해 송신 신호와 수신 신호의 위상과 주파수가 일치하지 않아 반송 주파수 옵셋이 발생되고 위상편이키잉 방식의 수중음향통신시스템의 성능을 저하시킨다. 본 논문에서는 수중 음향 통신 채널의 시 공간적 변동 채널에서 위상 코드를 적용한 반송 주파수 옵셋 보상 추정 기법의 성능을 평가하였다. 위상 코드는 주파수 옵셋을 추정하고 보상하기 위한 코드로 CAZAC를 적용하였으며, 실내 수조에서 성능을 평가하였다. QPSK 시스템에 위상코드를 적용한 결과는 적용하지 않은 경우보다 약 4-6배 비트오류율이 개선되었다.

적용환경을 고려한 Flextensional 변환기의 최적구조 설계 (Optimal Structural Design of a Flextensional Transducer Considering the Working Environment)

  • 강국진;노용래
    • 한국전기전자재료학회논문지
    • /
    • 제21권12호
    • /
    • pp.1063-1070
    • /
    • 2008
  • The performance of an acoustic transducer is determined by the effects of many design variables, and mostly the influences of these design variables are not linearly independent of each other. To achieve the optimal performance of an acoustic transducer, we must consider the cross-coupled effects of the design variables. In this study, the variation of the performances of underwater acoustic transducer in relation to its structural variables was analyzed. In addition, the new optimal design scheme of an acoustic transducer that could reflect not only individual but also all the cross-coupled effects of multiple structural variables, and could determine the detailed geometry of the transducer with great efficiency and rapidity was developed. The validation of the new optimal design scheme was verified by applying the optimal structure design of a flextensional transducer which are the most common use for high power underwater acoustic transducer. With the finite element analysis(FEA), we analyzed the variation of the resonance frequency, sound pressure, and working depth of a flextensional transducer in relation to its design variables. Through statistical multiple regression analysis of the results, we derived functional forms of the resonance frequency, sound pressure, and working depth in terms of the design variables. By applying the constrained optimization technique, Sequential Quadratic Programming Method of Phenichny and Danilin(SQP-PD), to the derived function, we designed and verified the optimal structure of the Class IV flextensional transducer that could provide the highest sound pressure level and highest working depth at a given operation frequency of 1 kHz.

표면파를 이용한 쇼트피닝된 Al 7075 합금의 잔류응력 평가 (Characterization of Residual Stress in Shot Peened Al 7075 Alloy Using Surface Acoustic Wave)

  • 김정석;김용권;박익근;권숙인
    • 비파괴검사학회지
    • /
    • 제26권5호
    • /
    • pp.291-296
    • /
    • 2006
  • 표면파를 이용하여 쇼트피닝된 Al 7075 합금의 잔류응력 분포를 평가하고자 하였다. 재료 내 표면층에 대한 잔류응력분포를 달리하기 위해서 피닝볼의 속도를 30m/s로 하여 쇼트피닝을 수행하였다. 표면파의 속도는 초음파현미경을 이용하여 V(z)곡선법으로 측정하였다. 쇼트피닝 후 비커스경도를 측정한 결과 쇼트피닝에 의한 소성변형으로 0.25mm 깊이까지 가공경화가 나타났다. 압축잔류응력이 증가하면서 표면파의 속도는 증가를 하였고 인장잔류응력이 작용할수록 표면파의 속도가 감소하였다. 표면파의 속도 변화는 X선 회절에 의해 측정한 잔류응력 변화와 밀접한 연관성을 나타내었다.

디지털 영상처리를 이용한 초음파 소노루미네센스 이미지 개선 (Enhancement of Ultrasonic Sonoluminescence Image Using Digital Image Processing)

  • 김정순;조미선;문관호;하강렬;전병두;김무준
    • 한국음향학회지
    • /
    • 제26권8호
    • /
    • pp.409-414
    • /
    • 2007
  • 소노루미네센스를 이용한 음향가시화법에 관한 연구가 많이 수행되었음에도 불구히필 그 응용사례를 찾기 힘든 것은 소노루미네센스 현상이 임계음압 이상에서만 나타난다는 단점 때문이다. 최근 개발된 고감도 디지털 카메라는 큰 메모리 용량과 높은 해상도를 이용하여 육안으로 관측하기 힘든 미약한 빛의 영상에 대해서도 그 디지털 데이터를 취득할 수 있게 되었다. 본 연구에서는 방사음압에 대한 소노루미네센스 현상의 발광 강도 변화를 조사하여 이 결과로부터 방사음압에 따른 강도변화를 선형화시키는 역함수의 형태를 구하였다 이 역함수의 형태로부터 매칭함수의 형태를 예측할 수 있었고 이를 소노루미네센스 현상으로부터 얻어진 디지털 영상데이터에 적용한 결과 영상데이터의 히스토그램의 분포를 적절히 제어하여 비교적 약한 음향강도에 의해 생성되는 소노루미네센스의 영상을 개선시킬 수 있었다.

한국어 원거리 음성의 모음의 음향적 특성 (Acoustic Characteristics of Vowels in Korean Distant-Talking Speech)

  • 이숙향;김선희
    • 대한음성학회지:말소리
    • /
    • 제55권
    • /
    • pp.61-76
    • /
    • 2005
  • This paper aims to analyze the acoustic effects of vowels produced in a distant-talking environment. The analysis was performed using a statistical method. The influence of gender and speakers on the variation was also examined. The speech data used in this study consist of 500 distant-talking words and 500 normal words of 10 speakers (5 males and 5 females). Acoustic features selected for the analysis were the duration, the formants (Fl and F2), the fundamental frequency and the total energy. The results showed that the duration, F0, F1 and the total energy increased in the distant-talking speech compared to normal speech; female speakers showed higher increase in all features except for the total energy and the fundamental frequency. In addition, speaker differences were observed.

  • PDF

전달행렬법에 의한 다공질 흡음재의 음향특성 연구 (A Study on the Acoustic Properties of Porous Material by Using Acoustic Transfer Matrix)

  • 박철희;주재만;염창훈
    • 소음진동
    • /
    • 제6권5호
    • /
    • pp.635-644
    • /
    • 1996
  • In this paper, Allard's modelling method which employs the method of acoustic transfer matrix(ATM) is applied to yield more precise results in the analysis of porous sound absorbing material. The method of ATM, based on Biot's theory, is known to play an important role in the estimation of the sound absorption when a sound projects onto the material. In the case of a single layered porous sound absorbing material, the surface impedance and the absorption coefficient by using the method of ATM are estimated. With the variation of the material properties, sound absorption characteristics and analyzed. Transmission Loss in a combination of the porous sound absorbing material with a thin plate is predicted.

  • PDF

희석된 수소-공기 확산 화염에서 음향파 응답과 NO 생성에 미치는 압력의 영향 (Effect of Pressure on Acoustic Pressure Response and NO Formation in Diluted Hydrogen-Air Diffusion Flames)

  • 손채훈;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.11-20
    • /
    • 1999
  • Acoustic pressure response and NO formation of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flame let in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such non-monotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. Acoustic pressure response in each regime is investigated based on the Rayleigh criterion. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted. Emission index of NO shows similar behaviors as to the peak-temperature variation with pressure.

  • PDF

Application of Neural Network to Determine the Source Location in Acoustic Emission

  • Lee, Sang-Eun
    • 비파괴검사학회지
    • /
    • 제25권6호
    • /
    • pp.475-482
    • /
    • 2005
  • The iterative calculation by least square method was used to determine the source location of acoustic emission in rock, as so called "traditional method". The results were compared with source coordinates infered from the application of neural network system for new input data, as so called "new method". Input data of the neural network were based on the time differences of longitudinal waves arrived from acoustic emission events at each transducer, the variation of longitudinal velocities at each stress level, and the coordinates of transducer as in the traditional method. The momentum back propagation neural network system adopted to determine source location, which consists of three layers, and has twenty-seven input processing elements. Applicability of the new method were identified, since the results of source location by the application of two methods were similarly concordant.

Frequency characteristic analysis on acoustic emission of mortar using cement-based piezoelectric sensors

  • Lu, Youyuan;Li, Zongjin
    • Smart Structures and Systems
    • /
    • 제8권3호
    • /
    • pp.321-341
    • /
    • 2011
  • Acoustic emission (AE) monitoring was conducted for mortar specimens under three types of static loading patterns (cubic-splitting, direct-shear and pull-out). Each of the applied loading patterns was expected to produce a particular fracture process. Subsequently, the AEs generated by various fracture or damage processes carried specific information on temporal micro-crack behaviors of concrete for post analysis, which was represented in the form of detected AE signal characteristics. Among various available characteristics of acquired AE signals, frequency content was of great interest. In this study, cement-based piezoelectric sensor (as AE transducer) and home-programmed DEcLIN monitoring system were utilized for AE monitoring on mortar. The cement-based piezoelectric sensor demonstrated enhanced sensitivity and broad frequency domain response range after being embedded into mortar specimens. This broad band characteristic of cement-based piezoelectric sensor in frequency domain response benefited the analysis of frequency content of AE. Various evaluation methods were introduced and employed to clarify the variation characteristics of AE frequency content in each test. It was found that the variation behaviors of AE frequency content exhibited a close relationship with the applied loading processes during the tests.

탄성 표면파를 이용한 점도 센서의 개발 (Development of viscosity sensor using surface acoustic wave)

  • 정우석;김기범;강형섭;홍철운
    • 센서학회지
    • /
    • 제17권4호
    • /
    • pp.289-294
    • /
    • 2008
  • The purpose of this study is to materialize the viscosity sensor by using the SH-SAW sensor of which the center frequency is operated at higher than 50 MHz. In order to measure the viscosity, SAW sensor of which the center frequency is operated at 100 MHz is developed. By using the developed sensor, phase shift, delay time, insertion loss, and frequency variation are measured at different viscosity. The result shows that the phase shift difference between the viscosity variations is such that the difference between the distilled water and the 100 % glycerol solution is approximately $45^{\circ}$, the change of the insertion loss is approximately 9 dB, and the difference of frequency variation is approximately 5.9 MHz. Therefore, it is shown that viscosity of unknown solution can be measured with the surface acoustic wave sensor.