• Title/Summary/Keyword: Acoustic study

Search Result 3,596, Processing Time 0.036 seconds

A study on development of automatic system of acoustic noise detection for realization of factory automation (공장 자동화를 위한 소음 자동 검사 시스템의 개발에 관한 연구)

  • Lee, Man-Hyung;Kim, Kyung-Chun;Kim, Jung-Khun;Jung, Yung-Chul;Ahn, Hee-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.967-970
    • /
    • 1988
  • This paper deals with automatic system of acoustic noise detection for realization of factory automation. The existing inspection process of failure products has mostly been executed in hand by rich-experienced workers. It is difficult to accomplish effectively or systematically the failure test of products owing to the diversality of ill-conditions. But the problem about it must be solved in viewpoint of cost down and factory automation in addition to the reliability of products. The necessity of automatic inspection system to inspect automatically undesirable acoustic noise of products which is one of the kinds of failure is suggested, and the procedure to develope it and the function of each system components are explained briefly.

  • PDF

A Study on Feature Extraction of Transformers Aging Signal using discrete Wavelet Transform Technique (이산 웨이블렛 변환 기법을 이용한 변압기 열화신호의 특징추출에 관한 연구)

  • Park, Jae-Jun;Kwon, Dong-Jin;Song, Yeong-Cheol;Ahn, Chang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.3
    • /
    • pp.121-129
    • /
    • 2001
  • In this paper, a new efficient feature extraction method based on Daubechies discrete wavelet transform is presented. This paper especially deals with the assessment of process statistical parameter using the features extracted from the wavelet coefficients of measured acoustic emission signals. Since the parameter assessment using all wavelet coefficients will often turn out leads to inefficient or inaccurate results, we selected that level-3 stage of multi decomposition in discrete wavelet transform. We make use of the feature extraction parameter namely, maximum value of acoustic emission signal, average value, dispersion, skewness, kurtosis, etc. The effectiveness of this new method has been verified on ability a diagnosis transformer go through feature extraction in stage of aging(the early period, the middle period, the last period)

  • PDF

Evaluation and monitoring of degradation mechanism of Li-ion battery for portable electronic device (휴대전자기기용 저용량 리튬이온 배터리의 충방전 열화 기구 분석 및 모니터링)

  • Byeon, Jai Won
    • Journal of Applied Reliability
    • /
    • v.13 no.2
    • /
    • pp.129-140
    • /
    • 2013
  • As a fundamental experimental study for reliability improvement of lithium ion secondary battery, degradation mechanism was investigated by microscopic observation and acoustic emission monitoring. Microstructural observation of the decomposed battery after cycle test revealed mechanical and chemical damages such as interface delamination, microcrack of the electrodes, and solid electrolyte interphase (SEI). Acoustic emission (AE) signal was detected during charge and discharge of lithium ion battery to investigate relationships among cumulative count, discharge capacity, and microdamages. With increasing number of cycle, discharge capacity was decreased and AE cumulative count was observed to increase. Observed damages were attributed to sources of the detected AE signals.

Acoustic performance of industrial mufflers with CAE modeling and simulation

  • Jeon, Soohong;Kim, Daehwan;Hong, Chinsuk;Jeong, Weuibong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.935-946
    • /
    • 2014
  • This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM) is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.

Heat and Mass Transfer Enhancement of a pendant droplet on heated horizontal surface by acoustic resonance (가열된 평판위에 매달려 있는 액적의 음향공진에 의한 열 및 물질 전달 촉진에 관한 연구)

  • Moon, Jong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.335-340
    • /
    • 2005
  • Nonlinear and forced oscillations of supported viscous droplet were focused in the present study. The droplet has a free contact line with solid plate and inviscid fluid. Natural frequencies of a pendant droplet have been investigated experimentally by imposing the acoustic wave while the frequency is being increased at a fixed amplitude. The evaporation was observed at atmosphere pressure. The droplet was recorded throughout the entire evaporation process and transient variations of the volume was measured. The evaporation process of oscillating droplet with thermofoil has been also observed to investigate analyzing the resonance effect on the thermal characteristics of droplet. It is found that a pendant droplet shows the resonant behaviors at each mode similar to the theoretical analysis. During imposing the acoustic wave, the pendant droplet makes a rotating motion in its longitudinal axis which is a new shape oscillation mode. The evaporation rate of a pendant droplet at resonant frequency is significantly enhanced.

  • PDF

Generation of coherent bulk and folded acoustic phonon oscillations in InGaN light-emitting diodes structure (InGaN LED 구조에서 결맞는 bulk phonon과 folded acoustic phonon의 생성)

  • Yang Ji-Sang;Jo Yeong-Dal;Lee Gi-Ju;O Eun-Sun;Kim Dae-Sik
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.54-55
    • /
    • 2001
  • Recently, there has been much interests in InGaN/GaN multiple-quantum-well (MQW) structures due to their applicability as optoelectronic devices such as light-emitting diodes (LEDs) and laser diodes [1]. Their ultrafast and physical properties are also of significant interests. Anomalously large acoustic phonon oscillations have been observed using ultrafast lasers in InGaN MQWs [2]. In this study, we have peformed femtosecond pump-probe experiments in the reflection geometry on 5 periods InGaN/GaN MQW LED structure with well width of 20$\AA$ and barrier width of 100$\AA$ at room temperature. (omitted)

  • PDF

Advantages of Acoustic Leak Detection System Development for KALIMER Steam Generators

  • Kim, Tae-Joon;Valery S. Yughay;Hwang, Sung-Tai;Chai, Jeong-Kyung;Choi, Jong-Hyeun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.423-440
    • /
    • 2001
  • For sodium cooling liquid metal reactors during the last 25 years, it was most important to verify the safety of the steam generator, which absolutely requires a water leak detection system with fine sensitivity and response. This study describes the structure and leak classification of the HAMMER (Korea Advanced Liquid Metal Reactor) steam generator, compared with other classifications, and explains the effects of leak development. The requirements and experimental situations for the development of the KALIMER acoustic leak detection system (KADS) which detects micro leaks, not intermediate leaks, are introduced. We proposed four frequency bands, 1∼8kHz, 8∼20kHz, 20∼40kHz and 40∼200kHz, split effectively for analyzing the detected acoustic leak signals obtained from the sodium-water reaction model or water model in the mock-up system.

  • PDF

Acoustic Emission Studies on the Structural Integrity Test of Welded High Strength Steel using Pattern Recognition (패턴인식을 이용한 고장력강의 용접 구조건전성 평가에 대한 음향방출 사례연구)

  • Kim, Gil-Dong;Rhee, Zhang-Kyu
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.185-196
    • /
    • 2008
  • The objective of this study is to evaluate the mechanical behaviors and structural integrity of the weldment of high strength steel by using an acoustic emission (AE) techniques. Simple tension and AE tests were conducted against the 3 kind of welding test specimens. In order to analysis the effectiveness of weldability, joinability and structural integrity, we used K-means clustering method as a unsupervised learning pattern recognition algorithm for obtained multivariate AE main data sets, such as AE counts, energy, amplitude, hits, risetime, duration, counts to peak and rms signals. Through the experimental results, the effectiveness of the proposed method is discussed.

  • PDF

A comparative study of full-band and sub-band approaches to acoustic echo cancellation (음향 피드백 제거를 위한 전대역, 협대역 적응 필터의 비교)

  • 신민철;김상명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.645-651
    • /
    • 2003
  • The system in which a microphone and a loudspeaker are simultaneously used can cause an echo. The echo is caused by feedback between the output of the loudspeaker and the input of the microphone. The acoustic echo canceller is a device to cancel the echo in a communication system. Its general procedure for cancellation is first estimating the plant response of the feedback path and then eliminating the feedback signal from the input signal. In this paper, full-band and sub-band approaches are compared by using some simulation examples.

  • PDF

Acoustic Emission Studies on the Structural Integrity Test of Welded High Strength Steel using Pattern Recognition: Focused on Tensile Test (패턴인식을 이용한 고장력강의 용접 구조건전성 평가에 대한 음향방출 사례연구: 인장시험을 중심으로)

  • Kim, Gil-Dong;Rhee, Zhang-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.4
    • /
    • pp.127-134
    • /
    • 2008
  • The objective of this study is to evaluate the mechanical behaviors and structural integrity of the weldment of high strength steel by using an acoustic emission (AE) techniques. Monotonic simple tension and AE tests were conducted against the 3 kinds of welded specimen. In order to analysis the effectiveness of weldability, joinability and structural integrity, we used K-means clustering method as a unsupervised learning pattern recognition algorithm for obtained multi-variate AE main data sets, such as AE counts, energy, amplitude, hits, risetime, duration, counts to peak and rms signals. Through the experimental results, the effectiveness of the proposed method is discussed.