• Title/Summary/Keyword: Acoustic study

Search Result 3,581, Processing Time 0.029 seconds

Acoustic Analysis of KSR-III Combustion Chamber with Various 5-Blade Baffles under Non-Reacting Condition (5-블레이드 배플이 설치된 로켓엔진 연소실에서의 상온음향 해석)

  • Kim, Hong-Jip;Kim, Seong-Ku;Sohn, Chae-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.167-171
    • /
    • 2003
  • Acoustic characteristics of baffled combustion chamber to elucidate suppressing effect of baffle on combustion instability are numerically investigated by linear acoustic analysis. A hub-blade baffle of 5 blades is selected as a candidate one and five variants of baffles with various configuration are designed. Resonant-frequency shift and damping factor are analyzed quantitatively as damping parameters. When the hub is located radially at the pressure node, the decrease of resonant frequency and increase of damping factor in 1R mode are dominant. But sub-1T mode is formed within hub, therefore, there would be a possibility of initiating 1T mode in unbaffled region, which would occur another problem. For smaller hub size, four kinds of axial baffle length is selected. As the axial baffle length increases, resonant frequency shift and increase of damping factor of transverse acoustic modes is obtained. Especially, two close acoustic modes such as 1L and 1T could be overlapped for a certain axial length, resulting in extreme increase of damping factor. The present study based on linear acoustic analysis is expected to be a useful confirming tool to predict acoustic field and design a passive control devices such as baffle and acoustic cavity.

  • PDF

An Investigation of Acoustic Signal Characteristics in Turning of Aluminum (알루미늄 선삭공정에서 발생되는 음향 신호 특성)

  • Lee, Chang-Hee;Kim, Yong-Yun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.457-462
    • /
    • 2007
  • This paper reports on the research which investigates acoustic signals acquired in turning with rough and finish simultaneously. The material is aluminum thin pipe. Two acoustic sensors were set on CNC machine. One was set on the finish bite and the other the rough. Two signals were first analyzed in order to consider how much the acoustic signal from the finish bite was coupled by that from the rough. A simple data collecting system to acquire signals from the finish was then determined because two acoustic signals were little coupled. Second the fundamental experiments were accomplished to study the effects of machine vibration and material state. The signal characteristics due to surface defects were studied from the collected acoustic signal data. The signal analysis was based on real time data, root mean squared average and frequency spectrum by fast fourier transform. As a result, the acoustic signals were made effects by machine condition, material structure. The acoustic signal from the finish bite was closely correlated with surface quality. Two types surface micro defects were then evaluated by the signal characteristics.

  • PDF

Nonlinear Sound Amplification and Directivity Due to Underwater Bubbles (수중 기포에 의한 비선형 음파의 증폭과 지향성)

  • 김병남;최복경;윤석왕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.250-260
    • /
    • 2003
  • Since a bubble in water is a highly nonlinear acoustic scatterer, the acoustic scattered waves from underwater bubbles show highly nonlinear acoustic properties. These acoustic scattered waves can be observed at the second or higher harmonics as well as at the fundamental primary frequency of incident acoustic wave. When two primary acoustic waves of different frequencies are incident on a bubble, the acoustic scattered waves can be also observed at the sum and the difference frequencies of the primary waves. In this study, when the two primary acoustic waves were incident on a bubble screen in water, we observed that the amplitude of difference frequency wave was amplified by the bubble nonlinearity and its directivity was oriented in the propagation directions of primary waves. The directivity of scattered difference frequency wave was analyzed as a coherent scattering for virtual source by using the directivity of the primary acoustic wave.

Identification of Noise Source of the HVAC Using Complex Acoustic Intensity Method (복소음향인텐시티법을 이용한 HVAC의 소음원 검출)

  • Yang, Jeong-Jik;Lee, Dong-Ju
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1089-1096
    • /
    • 2010
  • The relation between the vibration induced from machinery and the radiated sound is complicated. Acoustic intensity method is widely used to obtain the accuracy of noise measurement and noise identification. In this study, as groundwork, the complex acoustic intensity method is performed to identify noise source and transmission path on different free space point source fields. As an industrial application, the complex acoustic intensity method is applied to HVAC to identify sound radiation characteristics in the near field. Experimental complex acoustic intensity method was applied to HVAC, it is possible to identify noise sources in complicated sound field characteristics which noise sources are related with each other, and certificate the validity of complex acoustic intensity. Especially, it can be seen that complex acoustic intensity method using both of active and reactive intensity is vital in devising a strategy for identification of noise. Also, the vector flow of acoustic intensity was investigated to identify sound intensity distributions and energy flow in the near field of HVAC.

A Study of Echo Reduction of Underwater Acoustic Material Considering Ocean Condition (수중환경을 고려한 수중 음향재료의 반향음 감소성능 연구)

  • Seo, Young Soo;Ham, Il Bae;Jung, Woo Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.377-384
    • /
    • 2014
  • The requirement of acoustic material which is used in underwater environment more increases. The material is used to reduce acoustic signature and radiate noise for underwater vehicle. Underwater acoustic material was made by viscoelastic material such as a rubber and a polyurethane etc. The mechanical and acoustic characteristics of these material change with hydrostatic pressure. In order to increase an acoustic performance according to hydrostatic pressure, several kinds of scatterers were added to viscoelastic material. In this paper, acoustic modelling and analysis techniques of underwater acoustic material with hydrostatic pressure were introduced and proposed. The specimens for pulse tube test were made and echo reductions were calculated and measured with hydrostatic pressure. Also the characteristics of echo reduction of the specimens with hydrostatic pressure were obtained and discussed.

  • PDF

A Study on the Evaluation of Acoustic Performance for Music Room in Middle School using Auralization (가청화(可聽化)를 이용(利用)한 중학교(中學校) 음악실(音樂室)의 음향성능평가(音響性能評價)에 관(關)한 연구(硏究))

  • Soul, Soo-Hwan;Kang, Gyu-Sun;Kim, Jae-Soo
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.272-275
    • /
    • 2008
  • In case a middle school music room locating in Iksan City, this space had been finished its construction work with the indiscreet sound-absorbing materials despite the music lesson is taught thereat. Accordingly, when music lesson since it sounds aridly due to insufficiency of echo and sound-volume feeling in music appreciation or music performance sound, there is some difficulty in the music lesson. For the purpose to control the obstructive factors owing to such short Reverberation Time, it optimizes the acoustic factor using Acoustic Simulation after arrangement of Acoustic Design, it has conducted a Psycho-acoustics Experiment using the Auralizational Technique that can experience the Virtual Acoustic Field at its designing stage. As the result of investigation about the acoustic satisfaction on the relevant subject space and the satisfaction with regard to the pertinent each items, it was known that the valuation on acoustic performance was evidently improved at 'after-reformation' than 'before-reformation'. It is considered that such material could be utilized as the useful material that can improve the architectural acoustic factor when construction and renovation of any middle school music room in the future.

  • PDF

Quantitative evaluating method for diagnostic ultrasound probe using 3-dimensional acoustic field analysis (3차원 음장 분석법을 이용한 진단용 초음파 프로브의 정량적 성능평가)

  • Noh, Si-Cheol;Kim, Ju-Young;Park, Jae-Hyun;Kim, Jin-Su;Kang, Jung-Hoon;Choi, Heung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.490-496
    • /
    • 2010
  • In this study, in order to overcome the weakness of acoustic field analysis which is generally used for ultrasonic probe performance evaluation, automatic acoustic field measurement system and evaluation parameters were proposed. The comparisons between acoustic field simulation and measured acoustic distribution data of normal and abnormal channels were conducted to evaluate the availability of proposed system and evaluation parameters. First, the impulse response characteristic of sample probe was investigated to classify the normal elements and abnormal elements. And then, normal channels and abnormal channels with abnormal element were chosen. The suggested 12 evaluation parameters were calculated using the acoustic fields of these channels. The availability of proposed automatic acoustic field measurement system and evaluation parameters was confirmed. And the performance evaluation of ultrasonic probe using acoustic field analysis could be easier and faster.

A Study on the Acoustic Vibration Test of the COMS (통신해양기상위성의 음향진동시험에 관한 연구)

  • Lee, Ho-Hyung
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.69-74
    • /
    • 2010
  • As a part of development process of the COMS, an acoustic vibration test was performed in order to verify that the COMS is safe from the acoustic loads coming from the Ariane-5ECA launch vehicle when it is launched. In this paper, the acoustic vibration test preparation which was performed during the development of the COMS is explained, and through the evaluation of the test results, it was verified whether the COMS is safe from the acoustic load that the COMS will experience during the launch. Through detail evaluation of the acoustic loads on the solar array, Ka band communication payload antenna and feed, GOCI(Geo-Stationary Ocean Color Imager), MI(Meteorological Imager), it was confirmed that the COMS is safe from the acoustic loads from launch vehicle.

A Study on the Echo Reduction Performance of Underwater Acoustic Material (수중 음향재료의 반향음 감소성능 연구)

  • Seo, Young Soo;Ham, Il Bae;Jung, Woo Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.868-875
    • /
    • 2014
  • The requirement of acoustic material which is used in underwater environment more increases. The material is used to reduce acoustic signature and radiate noise for underwater vehicle. Underwater acoustic material was made by viscoelastic material such as rubber and polyurethane etc. The mechanical and acoustic characteristics of these material change with hydrostatic pressure. In order to improve an acoustic performance according to hydrostatic pressure, several kinds of scatterers were added to viscoelastic material. In this paper, acoustic modelling and analysis techniques of underwater acoustic material with hydrostatic pressure were introduced and proposed. The specimens for pulse tube test were made and echo reductions were calculated and measured with hydrostatic pressure. Also the characteristics of echo reduction of the specimens with hydrostatic pressure were obtained and discussed.

Multidisciplinary Design Optimization for Acoustic Characteristics of a Speaker Diaphragm (스피커 진동판의 음향특성 다분야통합최적설계)

  • Kim, Sung-Kuk;Lee, Tae-Hee;Lee, Surk-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.763-766
    • /
    • 2004
  • Recently, various acoustic artifacts that contains speaker have been produced such as cellular phone. Speaker consists of diaphragm generating sound and coil vibrating diaphragm. Generally, good speaker means that it has a wide frequency range, high output power rate to input power and flat sound pressure level in specified frequency range. Acoustic characteristic was estimated through the experiment and computer simulation, or sound power was controlled with acoustic sensitivity in a natural frequency range fer last decade. However, the flatness of sound pressure level has not been considered to enhance the sound quality of a speaker. Tn this study, a method for speaker design is proposed for a good acoustic characteristic, which is flatness of SPL(sound pressure level) and wideness between the first and second natural frequency. SYSNOISE is used fer acoustic analysis and ANSYS is used for harmonic response analysis and modal analysis. Optimization for acoustic characteristics of a speaker diaphragm is performed using ModelCenter. All analyses are done within a frequency domain. And we confirm that the experimental and computational simulations have similar trend.

  • PDF