• Title/Summary/Keyword: Acoustic propagation

Search Result 535, Processing Time 0.031 seconds

AE Evaluation on Strength Characteristic and Crack Propagation Behavior of Plain Woven CFRP Composite (평직구조 CFRP 적층판 복합재의 강도 및 균열진전특성에 대한 AE 평가)

  • Yun, Yu-Seong;Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • The mechanical strength and crack propagation of plain woven carbon fiber fabric laminate composites are examined by acoustic emission(AE). AE signals are measured during the tensile test and fracture tests. Thus, the relationship between AE signal and load-displacement curves and crack extension length are shown. Also the fracture mechanisms in terms of AE characteristics are discussed in viewpoint of crack propagation behavior.

Noise Characteristics of the HVAC System of Korea High Speed Train (한국형 고속전철 공조시스템 소음에 관한 연구)

  • 하인수;박철희;이우식;한기흥
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.379-387
    • /
    • 1998
  • HVAC systems are used to maintain comfort conditions in occupied spaces. Like rolling noise and aerodynamic noise, noise from the HVAC system of train increases interior noise level. For an appropriate interior noise level, it is necessary not to find noise sources and their propagation paths. Noise emission from the sources and propagation through the propagation paths should be regulated in order to reduce their effect to the interior noise level. In general, the main noise source in the HVAC system is blower which operates at high static pressure. This noise propagates through ducts which are directly connected to the residential area. Since the blower noise can be reduced only to some degree, it is necessary for the propagation paths to have enough noise attenuation. Acoustic properties of ducts are usually found by experimental methods but it is rather difficult and expensive to set up such test equipments. In this thesis, the design and the noise characteristics of TGV-K HVAC system are studied. Finite element method in accordance with experimental method is used to study the acoustic properties of TGV-K duct system.

  • PDF

Estimation of a transition point of sound propagation condition using transmission loss data measured in SAVEX15 (SAVEX15 실험 해역에서 측정된 전달손실 자료를 이용한 음파 전달 조건의 변환점 추정)

  • Kwon, Hyuckjong;Choi, Jee Woong;Kim, Byoung-Nam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Sound propagation in shallow water changes from spherical spreading to cylindrical spreading, depending on boundary conditions, and this point is defined as a transition point of the sound propagation condition. Theoretically, the transition point can be estimated using the transmission loss as a function of source-receiver range. In this paper, the transmission loss curve in a Pekeris waveguide is predicted using a parabolic-equation based acoustic propagation model and using this transmission loss curve, the range from the source of the transition point is estimated, which is compared to the critical distance calculated using the sound speed ratio of water to sediment. In addition, the effects of the sound speed profile and source depth change on the transition point are investigated. Finally, the transition point is estimated using the transmission loss data measured during the period of the SAVEX15 (Shallow Water Acoustic Variability EXperiment 2015) conducted 65 km southwest of Jeju Island in May 2015, and it is compared to the ocean environmental parameters to understand the properties of sound propagation in the experimental area.

Target motion analysis algorithm using an acoustic propagation model in the ocean environment of South Korea (한국 해양환경에서 음파전달모델을 이용한 표적기동분석 알고리즘)

  • Seo, Ki Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.387-395
    • /
    • 2019
  • TMA (Target Motion Analysis) in passive sonar is generally conducted with the bearing only or the bearing frequency. In order to conduct TMA fast and accurately, it is essential to estimate a initial target maneuver precisely. The accuracy of TMA can be improved by using SNR (Signal to Noise Ratio) information and acoustic propagation model additionally. This method assumes that the radiated noise level of the target is known, but the accuracy of TMA can be degraded due to a mismatch between the assumed radiated noise level and the actual radiated noise level. In this paper, TMA with the acoustic propagation model, bearing measurements, and SNR information is conducted in the ocean environment of South Korea (East Sea/ Yellow Sea/ South Sea). And the performance analysis of TMA for the mismatch in the radiated noise is presented.

Influence of a Warm Eddy on Low-frequency Sound Propagation in the East Sea (동해에서 저주파 음파전파에 미치는 난수성 소용돌이의 영향)

  • Kim, Bong-Chae;Choi, Bok-Kyoung;Kim, Byoung-Nam
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.325-335
    • /
    • 2012
  • It is well known that sound waves in the sea propagates under the influence of sea surface and bottom roughness, the sound speed profile, the water depth, and the density of sea floor sediment. In particular, an abrupt change of sound speed with depth can greatly affect sound propagation through an eddy. Eddies are frequently generated in the East Sea near the Korean Peninsula. A warm eddy with diameter of about 150 km is often observed, and the sound speed profile is greatly changed within about 400 m of water depth at the center by the eddy around the Ulleung Basin in the East Sea. The characteristics of low-frequency sound propagation across a warm eddy are investigated by a sound propagation model in order to understand the influence of warm eddies. The acoustic rays and propagation losses are calculated by a range-dependent acoustic model in conditions where the eddy is both present and absent. We found that low-frequency sound propagation is affected by the warm eddy, and that the phenomena dominate the upper ocean within 800 m of water depth. The propagation losses of a 100 Hz frequency are variable within ${\pm}15$ dB with depth and range by the warm eddy. Such variations are more pronounced at the deep source near the sound channel axis than the shallow source. Furthermore, low-frequency sound propagation from the eddy center to the eddy edge is more affected by the warm eddy than sound propagation from the eddy edge to the eddy center.

Simulation of Excitation and Propagation of Pico-Second Ultrasound

  • Yang, Seungyong;Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.457-466
    • /
    • 2014
  • This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

Overview of the KIOST-HYU Joint Experiment for Acoustic Propagation in Shallow Water Geological Environment (천해 지질환경에서의 음파전달 특성 연구를 위한 KIOST-한양대 공동실험 개요)

  • Cho, Sungho;Kang, Donhyug;Lee, Cheol-Ku;Jung, Seom-Kyu;Choi, Jee Woong;Oh, Suntaek
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.411-422
    • /
    • 2015
  • This paper presents an overview of the geological environment investigation and underwater acoustic measurements for the purpose of "Study on the Relationship between the Geological Environment and Acoustic Propagation in Shallow Water", which are jointly carried out by KIOST (Korea Institute of Ocean Science & Technology) and Hanyang University in the western shallow water off the Taean peninsula in the Yellow Sea in April-May 2013. The experimental site was made up of various sediment types and bedforms due to the strong tidal currents and coastal geomorphological characteristics. The geological characteristics of the study area were intensively investigated using multi-beam echo sounder, sub-bottom profiler, sparker system and grab sampler. Acoustic measurements with a wide range of research topics in a frequency range of 20~16,000 Hz: 1) low frequency sound propagation, 2) mid-frequency bottom loss, 3) spatial coherence analysis of ambient noise, and 4) mid- frequency bottom backscattering were performed using low- and mid-frequency sound sources and vertical line array. This paper summarizes the topics that motivated the experiment, methodologies of the acoustic measurements, and acoustic data analysis based on the measured geological characteristics, and describes summary results of the geological, meteorological, and oceanographic conditions found during the experiments.

AE source on-line localization on material with unknown acoustic wave propagation velocity (전파속도를 알수 없는 재료에서의 AE 발생위치 온라인 측정)

  • Jhang, Kyung-Young;Lee, Weon-Heum;Kim, Dal-jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.688-694
    • /
    • 1998
  • The ability to locate the defects in materials is one of the major attrations of the acoustic emission(AE) technique. The most conventional method for planar AE source localization is to place three or more AE sensors on the plate and to determine the source position by measuring the differences in the arrival times of the AE wave at the sensors, which is called as triangulation method. But this method can not be applied in the material of which elastic wave propagtion velocity is not known. In this paper, we propose two methods, vector method and error minimization method, for AE source location on the material with unknown AE wave velocity. In this method, it is not needed to know the propagation velocity previously, that is, we can apply this method to arbitrary material of which properties are not known exactly. Also, in this paper, the robustness to the error in the measurement of time differences are discussed for both methods. Finally, in order to evaluate the actual performances, experiments using a pencil lead break as the AE source were carried out on the aluminum plate.

Analysis on Acoustic Noise around Launch Pad Induced by the Launch of a Space Launch Vehicle (우주발사체 발사에 의한 발사장 주변의 음향 소음 분석)

  • Sim, Hyung-Seok;Choi, Kyu-Sung;Ko, Jeong-Hwan;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.208-215
    • /
    • 2012
  • The acoustic noise around a launch pad by launches of space launch vehicles was analyzed. The magnitudes of sound noise at some points near launch pad were predicted by locating the sound source at the exhaust jet plume of the rocket engine and considering several factors such as the directivity of the sound propagation and atmospheric attenuation. Specifically, the launch noise of Korea Space Launch Vehicle-I (KSLV-I) was estimated, and was compared to the actual measurement results. The analysis results proved to be heavily affected by the characteristics of directivity of sound propagation and the analysis showed good agreements with the measurements when the directivity of the sound was appropriately adjusted.

Frequency Characteristics of Acoustic Emission Signal from Fatigue Crack Propagation in 5083 Aluminum by Joint Time-Frequency Analysis Method (시간-주파수 해석법에 의한 5083 알루미늄의 피로균열 진전에 의할 음향방출 신호의 주파수특성)

  • NAM KI-WOO;LEE KUN-CHAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.46-51
    • /
    • 2003
  • Acoustic emission (AE) signals, emanated during local failure of aluminum alloys, have been the subject of numerous investigations. It is well known that the characteristics of AE are strongly influenced by the previous thermal and mechanical treatment of the sample. Possible sources of AE during deformation have been suggested as the avalanche motion of dislocations, fracture of brittle particles, and debonding of these particles from the alloy matrix. The goal of the present study is to determine if AE occurring as the result of fatigue crack propagation could be evaluated by the joint time-frequency analysis method, short time Fourier transform (STFT), and Wigner-Ville distribution (WVD). The time-frequency analysis methods can be used to analyze non-stationary AE more effectively than conventional techniques. STFT is more effective than WVD in analyzing AE signals. Noise and frequency characteristics of crack openings and closures could be separated using STFT. The influence of various fatigue parameters on the frequency characteristics of AE signals was investigated.