• 제목/요약/키워드: Acoustic noise and vibration

검색결과 1,415건 처리시간 0.026초

대형석탄화력발전용 보일러 관군의 Anti-Noise Baffle 설치에 따른 음향공진 (Acoustic resonance by Inserting Anti-noise Baffle in the Tube Bank of Boiler of a Large Fossil Power Plant)

  • 방경보;김철홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.178-183
    • /
    • 2004
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a large fossil power plant. The phenomena of acoustic resonance may arise when the vortex shedding frequency coincides with the acoustic natural frequency. In this system dominant frequency of vibration and noise was 37.5Hz. The $3^{rd}$ acoustic natural frequency calculated was 37.2 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance could occur. If system is the state of acoustic resonance, vibration and noise become large. In order to prevent acoustic resonance, anti-noise baffle should be installed in the tube bank. In the case of installing baffle, we should consider the number of baffle and the effect of acoustic mode due to baffle extension length. To do this, we did acoustic mode analysis. After installing anti-noise baffle, acoustic resonance was disappeared and vibration magnitude and noise level was reduced dramatically.

  • PDF

Structural noise mitigation for viaduct box girder using acoustic modal contribution analysis

  • Liu, Linya;Qin, Jialiang;Zhou, Yun-Lai;Xi, Rui;Peng, Siyuan
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.421-432
    • /
    • 2019
  • In high-speed railway (HSR) system, the structure-borne noise inside viaduct at low frequency has been extensively investigated for its mitigation as a research hotspot owing to its harm to the nearby residents. This study proposed a novel acoustic optimization method for declining the structure-borne noise in viaduct-like structures by separating the acoustic contribution of each structural component in the measured acoustic field. The structural vibration and related acoustic sourcing, propagation, and radiation characteristics for the viaduct box girder under passing vehicle loading are studied by incorporating Finite Element Method (FEM) with Modal Acoustic Vector (MAV) analysis. Based on the Modal Acoustic Transfer Vector (MATV), the structural vibration mode that contributes maximum to the structure-borne noise shall be hereinafter filtered for the acoustic radiation. With vibration mode shapes, the locations of maximum amplitudes for being ribbed to mitigate the structure-borne noise are then obtained, and the structure-borne noise mitigation performance shall be eventually analyzed regarding to the ribbing conduction. The results demonstrate that the structural vibration and structure-borne noise of the viaduct box girder mainly occupy both in the range within 100 Hz, and the dominant frequency bands both are [31.5, 80] Hz. The peak frequency for the structure-borne noise of the viaduct box girder is mainly caused by $16^{th}$ and $62^{th}$ vibration modes; these two mode shapes mainly reflect the local vibration of the wing plate and top plate. By introducing web plate at the maximum amplitude of main mode shapes that contribute most to the acoustic modal contribution factors, the acoustic pressure peaks at the field-testing points are hereinafter obviously declined, this implies that the structure-borne noise mitigation performance is relatively promising for the viaduct.

보조권선 활용에 의한 SRM의 진동 및 소음 저감 방안 (Vibration and Acoustic Noise Reduction Method of SRM Using Auxiliary Winding)

  • 정태욱
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권11호
    • /
    • pp.548-556
    • /
    • 2003
  • Switched reluctance motor(SRM) has simple magnetic structure, and needs simple power electronic driving circuit. It is very useful for wide range adjustable speed drive system. But, SRM drive generates large vibration and acoustic noise because it is commutated individually by step pulse m.m.f of each phase. In the vibration and acoustic noise characteristics. the considerable vibration and noise is induced by radial deforming of stator, so the frequency of dominant vibration and noise is coincident with the frequency of natural frequency of mechanical structure. This radial vibration force is generated by abrupt change of radial magnetic force in the phase commutation region. This paper studied about simple electromagnetic structure of SRM using auxiliary compensating winding for the reduction of noise and vibration. This auxiliary winding is coupled with all phase windings electromagnetically and absorb and transfer magnetic energy variation from phase to other phase. By this interaction of phase windings and compensating winding can reduce abrupt radial force change and vibration and acoustic noise. In this paper the improvement effect is examined by the test of prototype machine.

진동-음향 상반성을 이용한 차실-트렁크 연성계의 소음평가 (Noise Estimation in a Passenger Compartment and Trunk Coupled System by Using the Vibro-Acoustic Reciprocity)

  • 이진우;이장무;김석현;박동철
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.178-185
    • /
    • 2001
  • This paper describes the correlation between the interior noise and the trunk wall vibration. Using the vibro-acoustic reciprocity, effect of the trunk wall vibration on the compartment noise is investigated on a medium size car. In the low frequency range, vehicle interior noise is dominated by several acoustic modes of the passenger compartment and the vibration modes of the surrounding shell parts. Especially, vibration of the trunk wall radiates sound and it is transferred through holes on the package tray into the passenger compartment. This paper experimentally reveals that sound can be well produced at some particular vibration modes of the trunk lid and it strongly influences the compartment noise through package tray holes. Contributions of the trunk walls to the interior noise are estimated by measuring the acoustic-structural transfer function, based on the vibro-acoustical reciprocity theorem.

  • PDF

Acoustic mode 를 고려한 공동주택 중량충격음 소음해석 (The numerical analysis of heavy-weight impact noise for an apartment houses considering acoustic mode)

  • 문대호;황재승;박홍근;홍건호;임주혁
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.394-402
    • /
    • 2009
  • To investigate the heavy-weight impact noise of apartment houses, numerical analysis was performed. The analysis acoustic pressure consider acoustic mode by finite element method. The variables considered effecting on the acoustic pressure are the Acoustic mode, acoustic damping, and the impulse load. The heavy-weight impact noise is a changeable value in the room. Since the most part of the frequency component of heavy-weight impact noise has low frequency. The noise in low frequency is related to the vibration of structure, the reflection of acoustic wave caused by wall and the standing wave called by acoustic mode. The prediction by the numerical analysis was verified with test result of the heavy weight-impact noise at apartment houses.

  • PDF

순환 유동층 보일러 관군의 음향공진에 의한 이상소음 발생 및 저감 연구 (A study on the reduction of noise and vibration by acoustic resonance in the tube bank of a circulating fluidized bed combustion boiler)

  • 박응규;송근복;김원현;주원호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.101-106
    • /
    • 2011
  • In the present paper, the phenomena of abnormal noise and vibration due to acoustic resonance of CFBC(Circulating Fluidized Bed Combustion) boiler was presented. The acoustic resonance which occurred in the gas path of CFBC boiler system was caused by coincidence of vortex shedding frequency of tube bank and acoustic natural frequency of duct and hopper. And, the phenomena of beating arose from the interference of two closed resonant waves at 66.4Hz and 70.8Hz. There are two control methods for acoustic resonance in this system. The first method is to change the vortex shedding frequency from the structural alterations on the tube bank. And the second method is to change the acoustic natural frequency of the gas path with the installation of anti-noise baffles. The second one which is relatively easy to apply, was adapted in this study. As a result, the noise and vibration level have been decreased by 41dB and 94% at 66.4Hz, respectively. And the improvement of noise and vibration at 70.8Hz was identified by sensory evaluation.

  • PDF

DLP 프로젝터의 소음 저감 연구 (Study on Noise Reduction of DLP Projector)

  • 박대경;장동섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.132-137
    • /
    • 2003
  • For the evaluation of acoustic noise of a DLP projector, vibration and sound characteristics of a DLP projector were studied. The acoustic noise of DLP projector could be classified into three categories, that is, the direct noise from a body of rotation, the air-bone noise generated from turbulence or vortex occurred during cooling process and the structural born noise produced by vibrating elements. Cooling fans and color filter wheel which rotates at 9000 rpm are main causes of acoustic noise induced in DLP projector. Since the structure of an optical module in a DLP projector can be excited by the excessive vibration of a color filter wheel, the structural design for anti-vibration should be considered. To make a reduction of overall acoustic noise, the anti-vibration design and the enclosing structure have been studied and applied to a color filter wheel.

  • PDF

가정용 DLP 프로젝터의 소음 저감에 관한 연구 (Study on Noise Reduction of DLP Front Home Theater Projector)

  • 장동섭;박철민;박대경
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.861-867
    • /
    • 2004
  • For the evaluation of acoustic noise of a DLP projector, vibration and sound characteristics of a DLP projector were studied. The acoustic noise of DLP projector could be classified into three categories, that is, the direct noise from a body of rotation, the air-bone noise generated from turbulence or vortex occurred during cooling process and the structural born noise produced by vibrating elements. Cooling fans and color filter wheel which rotates at 9000 rpm are main causes of acoustic noise induced in DLP projector. Since the structure of an optical module in a DLP projector can be excited by the excessive vibration of a color filter wheel, the structural design for anti-vibration should be considered. To make a reduction of overall acoustic noise, the anti-vibration design and the enclosing structure have been studied and applied to a color filter wheel.

에어컨 홴 BLDC 전동기의 음향공진에 관한 연구 (Study on Acoustic Resonance of Air-conditioner Fan BLDC Motor)

  • 이홍주;권중학;이창민;황건용;황상문
    • 한국소음진동공학회논문집
    • /
    • 제19권9호
    • /
    • pp.863-869
    • /
    • 2009
  • Acoustic noises generated during motor operation in mechanical system are from electromagnetic, mechanical, aerodynamic and electrical sources. For identification of mechanical noise origins, misalignment, unbalance, fan shape, resonance, and vibration modes have been extensively considered to describe noise behavior. An experiment-based approach as well as a mathematical approach needs to be adopted for a realistic study into noise and vibration of the motor, because motor noise characteristics differ from type to type due to various noise sources. This paper analyzes noise characteristics of a brushless DC motor for air-conditioner fan, and proves that the test motor noise originates from acoustic modes of airspace in the motor. The motor noise sensitivity analysis by design of experiments reveals that the noise characteristics are closely related to switching frequency and frame thickness.

SRM의 직류여자 전류방식에 의한 진동, 소음의 저감 대책에 관한 연구 (Study on the Reduction of Vibration, Acoustic Noise of SRM by DC Excitation Commutation Method)

  • 황영문;정태욱;오성규;추영배
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권1호
    • /
    • pp.1-8
    • /
    • 2000
  • Switched reluctance motor(SRM) has simple magnetic structure, and requires simple power electronic driving circuit. It is very useful for wide range adjustable speed drive system. But, SRM drive generates large vibration and acoustic noise because it is commutated individually by step pulse m.m.f of each phase pole. In the vibration and acoustic noise characteristics. The considerable vibration and noise is induced by radial deforming of stator, so the frequency of dominant vibration and noise is coincident with the frequency of natural mode frequency of mechanical structure. This radial vibration force is generated in the phase commutation region. This paper suggests the new electromagnetic structure of SRM with auxiliary commutation winding which is excited by direct current. This phase and commutation winding are coupled magnetically between one phase winding and the other. Therefore, the switch-off phase current is absorbed by the another phase winding. By this interaction of phase and commutation winding in commutation mechanism, vibration and noise is reduced. And this reduction effect is examined by the test of prototype machine. As a result, SRM with DC exciting commutation winding is very useful to reduce vibration and acoustic noise.

  • PDF