• Title/Summary/Keyword: Acoustic model

Search Result 1,277, Processing Time 0.028 seconds

Earthquake Wave Propagation Using Staggered-grid Finite-difference Method in the Model of the Antarctic Region (엇격자 유한차분법을 이용한 극지해역 지진파 모델링)

  • Oh, Ju-Won;Min, Dong-Joo;Lee, Ho-Yong;Park, Min-Kyu
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.640-653
    • /
    • 2011
  • We simulate the propagation of earthquake waves in the continental margin of Antarctica using the elastic wave modeling algorithm, which is modified to be suitable for acoustic-elastic coupled media and earthquake source. To simulate the various types of earthquake source, the staggered-grid finite-difference method, which is composed of velocity-stress formulae, can be more appropriate to use than the conventional, displacement-based, finite-difference method. We simulate the elastic wave propagation generated by earthquakes combining 3D staggered-grid finite-difference algorithm composed of displacement-velocity-stress formulae with double couple mechanisms for earthquake source. Through numerical tests for left-lateral strike-slip fault, normal fault and reverse fault, we could confirm that the first arrival of P waves at the surface is in a good agreement with the theoretically-predicted results based on the focal mechanism of an earthquake. Numerical results for a model made after the subduction zone in the continental margin of Antarctica showed that earthquake waves, generated by the reverse fault and propagating through the continental crust, the oceanic crust and the ocean, are accurately described.

Development of a Korean Speech Recognition Platform (ECHOS) (한국어 음성인식 플랫폼 (ECHOS) 개발)

  • Kwon Oh-Wook;Kwon Sukbong;Jang Gyucheol;Yun Sungrack;Kim Yong-Rae;Jang Kwang-Dong;Kim Hoi-Rin;Yoo Changdong;Kim Bong-Wan;Lee Yong-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.498-504
    • /
    • 2005
  • We introduce a Korean speech recognition platform (ECHOS) developed for education and research Purposes. ECHOS lowers the entry barrier to speech recognition research and can be used as a reference engine by providing elementary speech recognition modules. It has an easy simple object-oriented architecture, implemented in the C++ language with the standard template library. The input of the ECHOS is digital speech data sampled at 8 or 16 kHz. Its output is the 1-best recognition result. N-best recognition results, and a word graph. The recognition engine is composed of MFCC/PLP feature extraction, HMM-based acoustic modeling, n-gram language modeling, finite state network (FSN)- and lexical tree-based search algorithms. It can handle various tasks from isolated word recognition to large vocabulary continuous speech recognition. We compare the performance of ECHOS and hidden Markov model toolkit (HTK) for validation. In an FSN-based task. ECHOS shows similar word accuracy while the recognition time is doubled because of object-oriented implementation. For a 8000-word continuous speech recognition task, using the lexical tree search algorithm different from the algorithm used in HTK, it increases the word error rate by $40\%$ relatively but reduces the recognition time to half.

Quantitative Analysis of Quadrupole Noise Sources upon Quick Opening The Throttle (쓰로틀밸브 급개방시 기류소음의 4극음원에 대한 정량적 해석)

  • Kim Jaeheon;Cheong Cheolung;Kim SungTae;Lee Soogab
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.469-474
    • /
    • 2002
  • In recent years, modularization of engine parts has increased the application of plastic products in air intake systems. Plastic intake manifolds provide many advantages including reduced weight, contracted cost, and lower intake air temperatures. These manifolds, however, have some weakness when compared with customary aluminium intake manifolds, in that they have low sound transmission loss because of their lower material density. This low transmission loss of plastic intake manifolds causes several problems related to flow noise, especially when the throttle is opened quickly. The physical processes, responsible for this flow noise, include turbulent fluid motion and relative motion of the throttle to the airflow. The former is generated by high-speed airflow in the splits between the throttle valve and the inner-surface of the throttle body and surge-tank, which can be categorized into the quadrupole source. The latter induces the unsteady force on the flow, which can be classified into the dipole source. In this paper, the mechanism of noise generation from the turbulence is only investigated as a preliminary study. Stochastic noise source synthesis method is adopted for the analysis of turbulence-induced, i.e. quadrupole noise by throttle at quick opening state. The method consists of three procedures. The first step corresponds to the preliminary time-averaged Navier-Stokes computation with a $k-\varepsilon$ turbulence model providing mean flow field characteristics. The second step is the synthesis of time-dependent turbulent velocity field associated with quadrupole noise sources. The final step is devoted to the determination of acoustic source terms associated with turbulent velocity. For the first step, we used market available analysis tools such as STAR-CD, the trade names of fluid analysis tools available on the market. The steady state flows at three open angle of throttle valve, i.e. 20, 35 and 60 degree, are numerically analyzed. Then, time-dependent turbulent velocity fields are produced by using the stochastic model and the flow analysis results. Using this turbulent velocity field, the turbulence-originated noise sources, i.e. the self-noise and shear-noise sources are synthesized. Based on these numerical results, it is found that the origin of the turbulent flow and noise might be attributed to the process of formulation and the interaction of two vortex lines formed in the downstream of the throttle valve. These vortex lines are produced by the non-uniform splits between the throttle valve and inner cylinder surface. Based on the analysis, we present the low-noise design of the inner geometry of throttle body.

  • PDF

Interpretation of Subsurface Fracture Characteristics by Fracture Mapping and Geophysical Loggings (단열조사 및 물리검층을 통한 지표 하 단열특성 해석)

  • Chae, Byung-Gon;Lee, Dae-Ha;Kim, Yu-Sung;Hwang, Se-Ho;Kee, Weon-Seo;Kim, Won-Young;Lee, Seung-Gu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.37-56
    • /
    • 2001
  • As a preliminary study to establish fracture network model in crystalline rocks, detail investigation on fracture characteristics were performed. Five fracture sets were determined on the basis of regional survey of geological structures and fractures on outcrops. Among the fracture sets, S1 set has the highest density and longest trace length of fractures which was identified on surface in the study area. S4 and S5 sets are composed of foliations and foliation parallel shear joints of gneisses, which are very important sets at the aspect of weighting of fracture length. For characterization of subsurface fractures, detail core logging was performed to identify fractures and fracture zones from five boreholes. Acoustic televiewer logging and borehole geophysical loggings produced images, orientations and geophysical properties of fractures which intersect with boreholes. According to the result of the investigations, subsurface fractures can be grouped as three preferred orientations(B1, B2 and B3), which correspond to S1, S2 and S4/S5 of surface fracture sets, respectively. Actually, B1 set is expected to be intensely developed at subsurface. However, it has low frequency of intersection with boreholes due to its parallel or sub-parallel direction to boreholes. According to the inference of conductive fractures, B1 and B3 sets have possibilities of water flow and their intersection lines are also thought to consist of important conduits of groundwater flow. In particular, faults which are parallel to foliations control major groundwater flow in the study area.

  • PDF

Visualization of Korean Speech Based on the Distance of Acoustic Features (음성특징의 거리에 기반한 한국어 발음의 시각화)

  • Pok, Gou-Chol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.197-205
    • /
    • 2020
  • Korean language has the characteristics that the pronunciation of phoneme units such as vowels and consonants are fixed and the pronunciation associated with a notation does not change, so that foreign learners can approach rather easily Korean language. However, when one pronounces words, phrases, or sentences, the pronunciation changes in a manner of a wide variation and complexity at the boundaries of syllables, and the association of notation and pronunciation does not hold any more. Consequently, it is very difficult for foreign learners to study Korean standard pronunciations. Despite these difficulties, it is believed that systematic analysis of pronunciation errors for Korean words is possible according to the advantageous observations that the relationship between Korean notations and pronunciations can be described as a set of firm rules without exceptions unlike other languages including English. In this paper, we propose a visualization framework which shows the differences between standard pronunciations and erratic ones as quantitative measures on the computer screen. Previous researches only show color representation and 3D graphics of speech properties, or an animated view of changing shapes of lips and mouth cavity. Moreover, the features used in the analysis are only point data such as the average of a speech range. In this study, we propose a method which can directly use the time-series data instead of using summary or distorted data. This was realized by using the deep learning-based technique which combines Self-organizing map, variational autoencoder model, and Markov model, and we achieved a superior performance enhancement compared to the method using the point-based data.

Transmission Noise Seduction Performance of Smart Panels using Piezoelectric Shunt Damping (압전감쇠를 이용한 압전지능패널의 전달 소음저감 성능)

  • 이중근
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • The possibility of a transmission noise reduction of piezoelectric smart panels using piezoelectric shunt damping is experimentally studied. Piezoelectric smart panel is basically a plate structure on which piezoelectric patch with shunt circuits is mounted and sound absorbing materials are bonded on the surface of the structure. Sound absorbing materials can absorb the sound transmitted at mid frequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to reduce the sound transmission at low panel resonances, piezoelectric damping using the measured electrical impedance model is adopted. Resonant shunt circuit for piezoelectric shunt damping is composed of register and inductor in series, and they are determined by maximizing the dissipated energy throughout the circuit. The transmitted noise reduction performance of smart panels is investigated using an acoustic tunnel. The tunnel is a tube with square crosses section and a loud-speaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across panels is measured. Noise reduction performance of a smart panels possessing absorbing material and/or air gap shows a good result at mid frequency region but little effect in the resonance frequency. By enabling the piezoelectric shunt damping, noise reduction of 10dB, 8dB is achieved at the resonance frequencise as well. Piezoelectric smart panels incorporating passive method and piezoelectric shunt damping are a promising technology for noise reduction in a broadband frequency.

  • PDF

True Triaxial Physical Model Experiment on Brittle Failure Grade and Failure Initiation Stress (취성파괴수준과 파괴개시시점에 관한 진삼축 모형실험연구)

  • Cheon, Dae-Sung;Park, Chan;Park, Chul-Whan;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.128-138
    • /
    • 2007
  • At low in-situ stress, the continuity and distribution of natural fractures in rock mass predominantly control the failure processes. However at high in-situ stress, the failure process are affected and eventually dominated by stress-induced fractures preferentially growing parallel to the excavation boundary. This fracturing is often observed in brittle type of failure such as slabbing or spatting. Recent studies on the stress- or excavation-induced damage of rock revealed its importance especially in a highly stressed regime. In order to evaluate the brittle failure around a deep underground opening, physical model experiments were carried out. For the experiments a new tue triaxial testing system was made. According to visual observation and acoustic emission detection, brittle failure grades were classified under three categories. The test results indicate that where higher horizontal stress, acting perpendicular $(S_{H2})$ and parallel $(S_{H1})$ to the axis of the tunnel respectively, were applied, the failure grade at a constant vertical stress level (Sy) was lowered. The failure initiation stress was also increased with the increasing $S_{H1}\;and\;S_{H2}$. From the multi-variable regression on failure initiation stress and true triaxial stress conditions, $f(S_v,\;S_{H1},\;S_{H2})$ was proposed.

Effective material properties of radially poled piezoelectric ring transducer for analysis of tangentially poled piezoelectric ring (원주 분극 압전 링 트랜스듀서 해석을 위한 방사 분극 링 유효 물성 도출)

  • Lee, Haksue;Cho, Cheeyoung;Park, Seongcheol;Cho, Yo-Han;Lee, Jeong-min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.184-192
    • /
    • 2019
  • Compared to 31-mode rings, 33-mode rings are highly utilized as wide bandwidth underwater acoustic transducers because the electro-mechanical coupling and piezoelectric constant d are high. On the other hand, the 31-mode ring is an axial symmetry structure, so it is possible to model it as a simple two-dimensional asymmetrical model for numerical analysis, but the 33-mode ring requires a three-dimensional numerical analysis. That is, a lot of computing resources and computation time are required. In this study, the effective material properties of an equivalent 31-mode ring were derived to simulate the electro-mechano-acoustical responses of the 33-mode ring transducer. Using the effective material properties derived from this study, a numerical analysis of rings in vacuum, air backed rings in water, and FFR (Free Flooded Ring) transducers were performed to compare the responses of 33-mode rings.

A Study on the Probability of Secondary Carcinogenesis during Gamma Knife Radiosurgery (감마나이프 방사선 수술시 2차 발암 확률에 관한 연구)

  • Joo-Ah, Lee;Gi-Hong, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.843-849
    • /
    • 2022
  • In this study, the probability of secondary carcinogenesis was analyzed by measuring the exposure dose of surrounding normal organs during radiosurgery using a gamma knife. A pediatric phantom (Model 706-G, CIRS, USA) composed of human tissue-equivalent material was set to four tumor volumes of 0.25 cm3, 0.51 cm3, 1.01 cm3, and 2.03 cm3, and the average dose was 18.4 ± 3.4 Gy. After installing the Rando phantom on the table of the gamma knife surgical equipment, the OSLD nanoDot dosimeters were placed in the right eye, left eye, thyroid, thymus gland, right lung, and left lung to measure each exposure dose. The probability of cancer occurrence due to radiation exposure of surrounding normal organs during gamma knife radiosurgery for acoustic schwannoma disease was 4.08 cancers per 100,000 at a tumor volume of 2.03 cm3. This study is expected to be used as useful data in relation to stochastic effects in the future by studying the risk of secondary radiation exposure that can occur during stereotactic radiosurgery.

A SVR Based-Pseudo Modified Einstein Procedure Incorporating H-ADCP Model for Real-Time Total Sediment Discharge Monitoring (실시간 총유사량 모니터링을 위한 H-ADCP 연계 수정 아인슈타인 방법의 의사 SVR 모형)

  • Noh, Hyoseob;Son, Geunsoo;Kim, Dongsu;Park, Yong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.321-335
    • /
    • 2023
  • Monitoring sediment loads in natural rivers is the key process in river engineering, but it is costly and dangerous. In practice, suspended loads are directly measured, and total loads, which is a summation of suspended loads and bed loads, are estimated. This study proposes a real-time sediment discharge monitoring system using the horizontal acoustic Doppler current profiler (H-ADCP) and support vector regression (SVR). The proposed system is comprised of the SVR model for suspended sediment concentration (SVR-SSC) and for total loads (SVR-QTL), respectively. SVR-SSC estimates SSC and SVR-QTL mimics the modified Einstein procedure. The grid search with K-fold cross validation (Grid-CV) and the recursive feature elimination (RFE) were employed to determine SVR's hyperparameters and input variables. The two SVR models showed reasonable cross-validation scores (R2) with 0.885 (SVR-SSC) and 0.860 (SVR-QTL). During the time-series sediment load monitoring period, we successfully detected various sediment transport phenomena in natural streams, such as hysteresis loops and sensitive sediment fluctuations. The newly proposed sediment monitoring system depends only on the gauged features by H-ADCP without additional assumptions in hydraulic variables (e.g., friction slope and suspended sediment size distribution). This method can be applied to any ADCP-installed discharge monitoring station economically and is expected to enhance temporal resolution in sediment monitoring.