• Title/Summary/Keyword: Acoustic model

Search Result 1,261, Processing Time 0.031 seconds

The Prediction of Weak Point about Vehicle Booming Noise Using the Acoustic Transfer Function (음향전달함수(ATF)를 이용한 부밍 소음 취약부 예측 연구)

  • Hwang, K.H.;Oh, H.J.;Choi, S.C.;Suh, J.K.;Hong, S.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.336-340
    • /
    • 2014
  • The noise and vibration have been evaluated by using the finite element model in the vehicle developing stage. The sound pressure of the vehicle compartment is predicted by the acoustic cavity model coupled with the body structure. In general, the structural model has been focused to study in the improvement of the noise. It is not easy to treat the structural model, instead the acoustic cavity model is relatively simple and aids in root cause analysis of vibro-acoustic issues. Therefore, the acoustic transfer function of the cavity is more efficient for finding out the main contribution parts of the vehicle booming noise. And examples about the run-up booming noise demonstrate the validity of the AFT analysis for improving the vibro-acoustic sensitivity.

  • PDF

An Investigation on the Acoustic Impedances and Estimation Models of Multiple Layer Perforated Plate Systems (다중 다공판 시스템의 음향임피던스와 계산모델에 관한 고찰)

  • 이동훈;허성춘;허성욱;김민배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1238-1243
    • /
    • 2002
  • In this study, the validity of the acoustic impedance model and the estimation model by electro-acoustic analogy suggested by Maa for predicting the absorptive performance of multiple layer perforated plate systems is investigated. From the comparison between the experiment and calculation for the absorption performance of double layer perforated plate system, the calculated results of using Rao and Munjal's impedance model and transfer matrix method are closer to the experimental values than those of using Maa's impedance model and electro-acoustic analogy. Therefore, in order to apply the acoustic impedance model and the estimation model by electro-acoustic analogy suggested by Maa to the multiple layer perforated plate systems, it is necessary that the suggested acoustic impedance and estimation models should be re-examined.

  • PDF

An Empirical Acoustic Impedance Model for the Design of Acoustic Resonator with Extended Neck at a High Pressure Environment (높은 음압에서의 내부 확장관형 음향 공명기의 설계를 위한 실험적 음향 임피던스 모델)

  • Park, Soon-Hong;Seo, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1199-1205
    • /
    • 2012
  • An empirical acoustic impedance model of acoustic resonators with extended neck at a high sound pressure environment is proposed. The acoustic resonator with extended neck into its cavity is appropriate for the launcher fairing application because the length of neck does not increase the total height of the resonator. This enables one to design slim and light acoustic resonators for launch vehicles. The suggested acoustic impedance model considers the incident pressure and geometric variables(the neck length, the perforation ratio and the hole diameter) in terms of non-dimensional variables. Several acoustic resonators with extended neck are manufactured and their wall impedances are measured according to the pre-defined incident pressure levels. Effects of non-dimensional variables on the non-linear acoustic impedance are investigated so that a simple non-linear impedance model for the launcher fairing application can be proposed. It is demonstrated that the estimated acoustic resistance and acoustic length correction show reasonable agreement with the measured ones within the range of design parameters for launcher fairings.

Room Acoustic Properties of Coupled Rooms Connected by an Aperture in the Steady State Condition (정상상태조건에서의 개구부로 연결된 커플룸의 음향 특성)

  • Na, Hae Joong;Lim, Byoung-Duk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.315-322
    • /
    • 2016
  • Room acoustic properties of coupled rooms connected by an aperture has been analyzed using statistical acoustic model based on the diffused sound field assumption, which has limitation in dealing with the parameters such an room geometries and non uniform absorptivity of the boundary surfaces. In order to overcome these difficulties the acoustic diffusion model has been introduced, by which distribution of the acoustic energy density can be analyzed for various shapes and wall absorptivity. In this study acoustic properties of coupled rooms connected by an aperture(e.g. door) is analyzed using acoustic diffusion equation, which is solved numerically. The mean energy densities of two rooms obtained by the diffusion model are compared with those from the statistical model. The results show good agreement for various coupling aperture sizes and absorption coefficients. For a limiting case when the partition wall is substituted by an aperture and the two rooms eventually forms a single room, results of coupled room analysis using diffusion model show good agreement with those of a single room.

Development of Analysis Model for Underwater Acoustic Performance of Multi-Layered Coatings Containing Visco-Elastic Composites (점탄성 복합재가 포함된 다층구조 코팅재의 수중음향성능 해석모델 개발)

  • Kim, Jae Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.25-39
    • /
    • 2018
  • In this paper, an integrated analysis model for evaluating the underwater acoustic performance of the multilayered acoustic coatings containing visco-elastic composite layers with hollow glass microspheres is described. The model uses the effective medium theory considering the acoustic scattering and resonance effects of the inclusions. Also, the model incorporates the compressive deformation mechanism associated with hydrostatic pressure. The technique developed in this work was used as the acoustic layer design and performance analysis tools for the practical hull coatings and acoustic baffles in Korean next generation submarines.

Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification

  • Ohayon, R.;Soize, C.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.127-153
    • /
    • 2012
  • This paper presents an advanced computational method for the prediction of the responses in the frequency domain of general linear dissipative structural-acoustic and fluid-structure systems, in the low-and medium-frequency domains and this includes uncertainty quantification. The system under consideration is constituted of a deformable dissipative structure that is coupled with an internal dissipative acoustic fluid. This includes wall acoustic impedances and it is surrounded by an infinite acoustic fluid. The system is submitted to given internal and external acoustic sources and to the prescribed mechanical forces. An efficient reduced-order computational model is constructed by using a finite element discretization for the structure and an internal acoustic fluid. The external acoustic fluid is treated by using an appropriate boundary element method in the frequency domain. All the required modeling aspects for the analysis of the medium-frequency domain have been introduced namely, a viscoelastic behavior for the structure, an appropriate dissipative model for the internal acoustic fluid that includes wall acoustic impedance and a model of uncertainty in particular for the modeling errors. This advanced computational formulation, corresponding to new extensions and complements with respect to the state-of-the-art are well adapted for the development of a new generation of software, in particular for parallel computers.

Modifications of Numerical Impedance Boundary Conditions Considering Incident Acoustic Pressure (음향 입사파를 고려한 수치적 임피던스 경계조건의 보정)

  • Kim, Min-Woo;Park, Yong-Hwan;Kim, Sung-Tae;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.344-348
    • /
    • 2007
  • The acoustic liner has been used for the suppression of noise. The impedance characteristics of the acoustic liner are increased by the incident pressure. For the estimation of the acoustic liner on the incident acoustic pressure effect, the modified impedance model is suggested on the basis of the GE impedance prediction model. The modified impedance model is originated from the 3 parameter impedance model, and extended to the incident pressure parameter. The modified model is applied on the simple duct analysis with variant source pressure. Through the computation, it is observed that the fore directivity patterns of the duct are varied by the incident SPL level.

  • PDF

Combustion Instability of Gas Turbine with Segmented Dynamic Thermo-Acoustic Model under Load Follow-Up (이산형 열-음향 모델을 이용한 부하 변동시 가스터빈 연소 불안정 특성)

  • JEONG, JIWOONG;HAN, JAEYOUNG;JEONG, JINHEE;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.538-548
    • /
    • 2018
  • The thermo-acoustic instability in the combustion process of a gas turbine is caused by the interaction of the heat release mechanism and the pressure perturbation. These acoustic vibrations cause fatigue failure of the combustor and decrease the combustion efficiency. This study is to develop a segmented dynamic thermo-acoustic model to understand combustion instability of gas turbine. Therefore, this study required a dynamic analysis rather than static analysis, and developed a segmented model that can analyze the performance of the system over time using the Matlab/Simulink. The developed model can confirm the thermo-acoustic combustion instability and exhaust gas concentration in the combustion chamber according to the equivalent ratio change, and confirm the thermo-acoustic combustion instability for the inlet temperature and the load changes. As a result, segmented dynamic thermo-acoustic model has been developed to analyze combustion instability under the operating condition.

A New Distance Measure for a Variable-Sized Acoustic Model Based on MDL Technique

  • Cho, Hoon-Young;Kim, Sang-Hun
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.795-800
    • /
    • 2010
  • Embedding a large vocabulary speech recognition system in mobile devices requires a reduced acoustic model obtained by eliminating redundant model parameters. In conventional optimization methods based on the minimum description length (MDL) criterion, a binary Gaussian tree is built at each state of a hidden Markov model by iteratively finding and merging similar mixture components. An optimal subset of the tree nodes is then selected to generate a downsized acoustic model. To obtain a better binary Gaussian tree by improving the process of finding the most similar Gaussian components, this paper proposes a new distance measure that exploits the difference in likelihood values for cases before and after two components are combined. The mixture weight of Gaussian components is also introduced in the component merging step. Experimental results show that the proposed method outperforms MDL-based optimization using either a Kullback-Leibler (KL) divergence or weighted KL divergence measure. The proposed method could also reduce the acoustic model size by 50% with less than a 1.5% increase in error rate compared to a baseline system.

A Study on the Improvement of Submarine Detection Based on Mast Images Using An Ensemble Model of Convolutional Neural Networks (컨볼루션 신경망의 앙상블 모델을 활용한 마스트 영상 기반 잠수함 탐지율 향상에 관한 연구)

  • Jeong, Miae;Ma, Jungmok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • Due to the increasing threats of submarines from North Korea and other countries, ROK Navy should improve the detection capability of submarines. There are two ways to detect submarines : acoustic detection and non-acoustic detection. Since the acoustic-detection way has limitations in spite of its usefulness, it should have the complementary way. The non-acoustic detection is the way to detect submarines which are operating mast sets such as periscopes and snorkels by non-acoustic sensors. So, this paper proposes a new submarine non-acoustic detection model using an ensemble of Convolutional Neural Network models in order to automate the non-acoustic detection. The proposed model is trained to classify targets as 4 classes which are submarines, flag buoys, lighted buoys, small boats. Based on the numerical study with 10,287 images, we confirm the proposed model can achieve 91.5 % test accuracy for the non-acoustic detection of submarines.