• Title/Summary/Keyword: Acoustic estimated

Search Result 404, Processing Time 0.022 seconds

Detection of Underwater Target Using Adaptive Filter (해수에서 물체 탐지를 위한 적응 필터의 이용에 관한 연구)

  • Oh, Jong-Taik;Kwon, Sung-Jai;Park, Song-Bai
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.29-38
    • /
    • 1989
  • Detection of an underwater target by acoustic wave raises various difficulties due to unpredictable noise interference which originates from clutter, reverberation, and variations of medium characteristics with time and location. The SNR and the range resolution of conventional SONAR systems using a matched filter are generally poor, since the latter is optimum only in the additive white noise case. Furthermore, it cannot compensate for variations of the detection level which are responsible for the resultant detection errors. In this paper, the unpredictable interferences are compensated for by using an adaptive filter. It recursively estimates the channel impulse response based on the received echo signal. In the low noise environments, the estimated impulse response is close to the true one, providing a good range resolution, and a matched filter is used subsequently for the purpose of detection. It is shown through computer simulation that good performance can be achieved via the two steps of filtering. Also, the detection level remains unchanged without any additional provisions. Finally, we present the characteristics of the employed adaptive filter parameters.

  • PDF

Spatial Coherence Analysis of Underwater Ambient Noise Measured at the Yellow Sea (서해에서 측정된 수중 주변 소음의 공간 코히런스 분석)

  • Kwon, Hyuckjong;Kim, Junghun;Choi, Jee Woong;Kang, Donhyug;Cho, Sungho;Jung, Seom-Kyu;Park, Kyeongju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.432-443
    • /
    • 2015
  • Coherence describing the similarity between physical quantities of two signals is a very useful tool to investigate the temporal and spatial characteristics of signals propagating in underwater acoustic waveguide. Ambient noise measurements were made by the vertical received array consisting of three hydrophones as part of the KIOST-HYU joint acoustics experiment, and the coherence for the underwater ambient noise was analyzed. In this paper, the coherence results in cases that the generator in the research vessel was off and turned on are presented. The coherence estimated in the case of the generator operation mode are compared to the predictions obtained using the theoretical model with the directional density function dominated by vertical components propagating downward from the ship. In the case of the generator switch-off, the results are compared to the model predictions with directional density function including the effects of sea surface noise and long-distance shipping noise.

Experimental results on Shape Reconstruction of Underwater Object Using Imaging Sonar (영상 소나를 이용한 수중 물체 외형 복원에 관한 기초 실험)

  • Lee, Yeongjun;Kim, Taejin;Choi, Jinwoo;Choi, Hyun-Taek
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.116-122
    • /
    • 2016
  • This paper proposes a practical object shape reconstruction method using an underwater imaging sonar. In order to reconstruct the object shape, three methods are utilized. Firstly, the vertical field of view of imaging sonar is modified to narrow angle to reduce an uncertainty of estimated 3D position. The wide vertical field of view makes the incorrect estimation result about the 3D position of the underwater object. Secondly, simple noise filtering and range detection methods are designed to extract a distance from the sonar image. Lastly, a low pass filter is adopted to estimate a probability of voxel occupancy. To demonstrate the proposed methods, object shape reconstruction for three sample objects was performed in a basin and results are explained.

Wind-driven Current in the East Sea Observed from Mini-met Drifters (기상뜰개로 관측된 동해에서의 취송류)

  • Lee, Dong-Kyu
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.103-110
    • /
    • 2014
  • A wind-driven current in the East Sea from Lagrangian measurements of wind and current at 15 m using MiniMet drifters was analyzed. Spectral analysis of the current from 217 pieces of a 10 day-long time series shows the dominant energy at the inertial frequency for the current at 15 m. Wind has energy peaks at a 0.2-0.5 cycles per day (cpd) frequency band. The power spectrum of the clockwise rotating component is predominant for the current and was 1.5-2 times larger than the anticlockwise rotating component for wind. Co-spectra between the wind and current show two peak frequency bands at subinertial frequency and 0.5-0.3 cpd. Coherences between the wind and current at those peak frequencies are significant with 95% confidence and phase differences were $90-100^{\circ}$. From the phase differences, the efolding depth is estimated as 17 m and this e-folding depth is smaller than the estimation by Chereskin's (1999) 25 m using a moored Acoustic Doppler Current Profiler and an anemometer installed at the surface buoy. The angle between the wind-driven current (or ageostrophic current) and wind from this study was also much larger than the global estimate by Rio and Hernandez (2003) using reanalysis wind and drifters. The possible explanation for the discrepancy comes from the fact that the current is driven by a wind of smaller length scale than 250 km but the satellite or the reanalysis products do not resolve winds of length scale smaller than 250 km. Large rms differences between Mini-Met and QuickSCAT wind on spatial lags smaller than 175 km substantiate this explanation.

Estimation of Moon Jellyfish Aurelia coerulea Using Hydroacoustic Methods off the Coast of Tongyeong, Korea (통영 인근해역에서 음향기법을 이용한 보름달물해파리(Aurelia coerulea)의 밀도 추정)

  • Shin, Hyung-Ho;Han, Inwoo;Oh, Wooseok;Chae, Jinho;Yoon, Euna;Lee, Kyounghoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.6
    • /
    • pp.725-734
    • /
    • 2019
  • Moon jellyfish Aurelia coerulea are highly abundant off the coast of Tongyeong, Korea. We measured the density of A. coerulea in this area using a scientific echosounder at frequencies of 38 and 120 kHz, and then applied a distorted wave Born approximation (DWBA) model to calculate the target strength of the echosounder at each frequency. Then, we used the frequency difference method to extract jellyfish echo signals and estimate the A. coerulea density. A. coerulea was evenly distributed throughout the water column; the backscattering strength ranged from -75 to -65 dB. In May and August, the A. coerulea densities at survey lines 3 and 4 were estimated at 1.5-1.6 and 0.2-0.9 g/m2, with mean weighted densities of 1.04 and 0.48 g/m2, respectively. In September, the A. coerulea densities estimates in Jaran Bay and Goseong Bay were 0.6-2.1 and 0.1-0.4 g/m2, with mean weighted densities of 1.25 and 0.24 g/m2, respectively.

Relationship between roar sound characteristics and body size of Steller sea lion

  • Park, Tae-Geon;Iida, Kohji;Mukai, Tohru
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.458-465
    • /
    • 2010
  • Hundreds of Steller sea lions, Eumetopias jubatus, migrate from Sakhalin and the northern Kuril Islands to Hokkaido every winter. During this migration, they may use their roaring sounds to navigate and to maintain their groups. We recorded the roars of wild Steller sea lions that had landed on reefs on the west coast of Hokkaido, and those of captive sea lions, while making video recordings. A total of 300 roars of wild sea lions and 870 roars of captive sea lions were sampled. The fundamental frequency ($F_0$), formant frequency ($F_1$), pulse repetition rate (PRR), and duration of syllables (T) were analyzed using a sonagraph. $F_0$, $F_1$, and PRR of the roars emitted by captive sea lions increased in the order male, female, and juvenile. By contrast, the $F_1$ of wild males was lower than that of females, while the $F_0$ and PRR of wild males and females did not differ statistically. Moreover, the $F_0$ and $F_1$ frequencies for captive sea lions were higher than those of wild sea lions, while PRR in captive sea lions was lower than in wild sea lions. Since there was a linear relationship between body length and the $F_0$ and $F_1$ frequencies in captive sea lions, the body length distribution of wild sea lions could be estimated from the $F_0$ and $F_1$ frequency distribution using a regression equation. These results roughly agree with the body length distribution derived from photographic geometry. As the volume of the oral cavity and the length of the vocal cords are generally proportional to body length, sampled roars can provide useful information about a population, such as the body length distribution and sex ratio.

Speech Quality Estimation Algorithm using a Harmonic Modeling of Reverberant Signals (반향 음성 신호의 하모닉 모델링을 이용한 음질 예측 알고리즘)

  • Yang, Jae-Mo;Kang, Hong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.919-926
    • /
    • 2013
  • The acoustic signal from a distance sound source in an enclosed space often produces reverberant sound that varies depending on room impulse response. The estimation of the level of reverberation or the quality of the observed signal is important because it provides valuable information on the condition of system operating environment. It is also useful for designing a dereverberation system. This paper proposes a speech quality estimation method based on the harmonicity of received signal, a unique characteristic of voiced speech. At first, we show that the harmonic signal modeling to a reverberant signal is reasonable. Then, the ratio between the harmonically modeled signal and the estimated non-harmonic signal is used as a measure of standard room acoustical parameter, which is related to speech clarity. Experimental results show that the proposed method successfully estimates speech quality when the reverberation time varies from 0.2s to 1.0s. Finally, we confirm the superiority of the proposed method in both background noise and reverberant environments.

An Efficient Receiver Structure Based on PN Performance in Underwater Acoustic Communications (수중음향통신에서 PN 성능 기반의 효율적인 수신 구조)

  • Baek, Chang-Uk;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.173-180
    • /
    • 2017
  • Underwater communications are degraded as a result of inter symbol interference in multipath channels. Therefore, a channel coding scheme is essential for underwater communications. Packets consist of a PN sequence and a data field, and the uncoded PN sequence is used to estimate the frequency and phase offset using a Doppler and phase estimation algorithm. The estimated frequency and phase offset are fed to a coded data field to compensate for the Doppler and phase offset. The PN sequence is generally utilized to acquire the synchronization information, and the bit error rate of an uncoded PN sequence predicts the performance of the coded data field. To ensure few errors, we resort to powerful BCJR decoding algorithms of convolutional codes with rates of 1/2, 2/3, and 3/4. We use this powerful channel coding algorithm to present an efficient receiver structure based on the relation between the bit error of the uncoded PN sequence and coded data field in computer simulations and lake experiments.

Array gain estimated by spatial coherence in noise fields (소음 환경에서 공간상관성을 이용한 배열이득 추정)

  • Park, Ji Sung;Choi, Yong Wha;Kim, Jea Soo;Cho, Sungho;Park, Jung Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.427-435
    • /
    • 2016
  • Array Gain (AG) is a metric to measure the performance of an array of acoustic sensors. AG is affected by the configuration of array, frequency and array element spacing, and the directivity of the ambient noise. In this paper, an algorithm to calculate AG based on the spatial coherence is used, and the results are verified through sea-going experiment. The method using the spatial coherence can be used to consider the arbitrary shape of an array and directionality of ambient noise. In the sea-going experiment, the towed source was used to transmit the Continuous Wave (CW), and was received at the horizontal line array on the seabed. The ambient noise was measured between the source transmission. The experimental AG was calculated from the SNR (Signal to Noise Ratio) of single sensor and an array of sensors. Finally, the predicted AG is shown to agree with the experimental value of AG.

Estimation of surficial sediment thickness using mid-frequency ocean acoustic bottom reflected signals measured in shallow water off Geoje island (거제 인근해역에서 측정된 중주파수 음향 해저면 반사 신호를 이용한 표층 해저면 두께 추정)

  • Kwon, Hyuckjong;Choi, Jee Woong;Son, Su-Uk;Cho, Sungho;Hahn, Jooyoung;park, Joung-Soo;Park, Kyeongju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.419-426
    • /
    • 2016
  • Measurements of bottom loss as a function of grazing angle (in range of $9{\sim}14^{\circ}$) at a frequency range of 4 ~ 8 kHz were conducted on an experimental site off Geoje island in October 2015. Geoacoustic inversion of the surficial sediment thickness is performed using the arrival time difference between the surficial layer and the sub-bottom layer reflected signal. To invert the thickness of surficial sediment, we used the grain size of $8{\sim}10{\phi}$ obtained by KIGAM (Korea Institute of Geoscience and Mineral Resources). The thickness of the surficial sediment was estimated to be 4 ~ 7 m. Finally, this inversion result was compared with the geoacoustic observation conducted by the KIOST (Korea Institute of Ocean Science & Technology) using sub-bottom profiler.