• Title/Summary/Keyword: Acoustic characteristics

Search Result 2,184, Processing Time 0.032 seconds

Visualization of Korean Speech Based on the Distance of Acoustic Features (음성특징의 거리에 기반한 한국어 발음의 시각화)

  • Pok, Gou-Chol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.197-205
    • /
    • 2020
  • Korean language has the characteristics that the pronunciation of phoneme units such as vowels and consonants are fixed and the pronunciation associated with a notation does not change, so that foreign learners can approach rather easily Korean language. However, when one pronounces words, phrases, or sentences, the pronunciation changes in a manner of a wide variation and complexity at the boundaries of syllables, and the association of notation and pronunciation does not hold any more. Consequently, it is very difficult for foreign learners to study Korean standard pronunciations. Despite these difficulties, it is believed that systematic analysis of pronunciation errors for Korean words is possible according to the advantageous observations that the relationship between Korean notations and pronunciations can be described as a set of firm rules without exceptions unlike other languages including English. In this paper, we propose a visualization framework which shows the differences between standard pronunciations and erratic ones as quantitative measures on the computer screen. Previous researches only show color representation and 3D graphics of speech properties, or an animated view of changing shapes of lips and mouth cavity. Moreover, the features used in the analysis are only point data such as the average of a speech range. In this study, we propose a method which can directly use the time-series data instead of using summary or distorted data. This was realized by using the deep learning-based technique which combines Self-organizing map, variational autoencoder model, and Markov model, and we achieved a superior performance enhancement compared to the method using the point-based data.

Study on frequency response of implantable microphone and vibrating transducer for the gain compensation of implantable middle ear hearing aid (이식형 마이크로폰과 진동체를 갖는 인공중이의 이득 보상을 위한 주파수 특성 고찰)

  • Jung, Eui-Sung;Seong, Ki-Woong;Lim, Hyung-Gyu;Lee, Jang-Woo;Kim, Dong-Wook;Lee, Jyung-Hyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.361-368
    • /
    • 2010
  • ACROSS device, which is composed of an implantable microphone, a signal processor, and a vibrating transducer, is a fullyimplantable middle ear hearing device(F-IMEHD) for the recovery of patients with hearing loss. And since a microphone is implanted under skin and tissue at the temporal bones, the amplitude of the sound wave is attenuated by absorption and scattering. And the vibrating transducer attached to the ossicular chain caused also the different displacement from characteristic of the stapes. For the gain control of auditory signals, most of implantable hearing devices with the digital audio signal processor still apply to fitting rules of conventional hearing aid without regard to the effect of the implanted microphone and the vibrating transducer. So it should be taken into account the effect of the implantable microphone and the vibrating transducer to use the conventional audio fitting rule. The aim of this study was to measure gain characteristics caused by the implanted microphone and the vibrating transducer attached to the ossicle chains for the gain compensation of ACROSS device. Differential floating mass transducers (DFMT) of ACROSS device were clipped on four cadaver temporal bones. And after placing the DFMT on them, displacements of the ossicle chain with the DFMT operated by 1 $mA_{peak}$ current was measured using laser Doppler vibrometer. And the sensitivity of microphones under the sampled pig skin and the skin of 3 rat back were measured by stimulus of pure tones in frequency from 0.1 to 8.9 kHz. And we confirmed that the microphone implanted under skin showed poorer frequency response in the acoustic high-frequency band than it in the low- to mid- frequency band, and the resonant frequency of the stapes vibration was changed by attaching the DFMT on the incus, the displacement of the DFMT driven with 1 $mA_{rms}$ was higher by the amount of about 20 dB than that of cadaver's stapes driven by the sound presssure of 94 dB SPL in resonance frequency range.

Comparative Analysis on the Sound Characteristics of Riffles and Pools (여울과 소의 소리특성 비교 분석)

  • Kang, Su-Jin;Kang, Joon-Gu;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.878-886
    • /
    • 2018
  • This study quantified the sounds of riffles and pools in natural rivers and conducted a comparative analysis of the frequency and sound pressure per flow velocity. The surveyed area was Namdaecheon basin in Yangyang-gun, Gangwon-do and the sounds of a total of 23 sites were analyzed. A hydro microphone was used to measure the sound and analyze the data using an acoustic analysis program. The location was also selected at places with minimal ambient noise and the measurement points were the depth of riffles and pools. The results revealed an average difference of 0.515 m/s for flow velocity at 8 riffles and 15 pools. The difference in sound pressure occurred due to the flow velocity. In the case of sound pressure, it was measured at an average of 176.8 dB for riffles and 168.2 dB for pools, demonstrating a difference of approximately 8.6 dB. Furthermore, in the case of maximum sound pressure, riffles showed a constant range between 200 Hz and 250 Hz, while the pools exhibited maximum sound pressure at various frequencies from 200 Hz to 1,000 Hz. This revealed the ecological stream reproduction, development of preferred sound sources for aquatic life, and design of structures.

Analysis of the crack propagation rules and regional damage characteristics of rock specimens

  • Li, Yangyang;Xu, Yadong;Zhang, Shichuan;Fan, Jing;Du, Guobin;Su, Lu;Fu, Guangsheng
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.215-226
    • /
    • 2021
  • To study the evolution mechanism of cracks in rocks with multiple defects, rock-like samples with multiple defects, such as strip-shaped through-going cracks and cavity groups, are used, and the crack propagation law and changes in AE (acoustic emission) and strain of cavity groups under different inclination angles are studied. According to the test results, an increase in the cavity group inclination angle can facilitate the initial damage degree of the rock and weaken the crack initiation stress; the initial crack initiation direction is approximately 90°, and the extension angle is approximately 75~90° from the strip-shaped through-going cracks; thus, the relationship between crack development and cavity group initiation strengthens. The specific performance is as follows: when the initiation angle is 30°, the cracks between the cavities in the cavity group develop relatively independently along the parallel direction of the external load; when the angle is 75°, the cracks between the cavities in the cavity group can interpenetrate, and slip can occur along the inclination of the cavity group under the action of the shear mechanism rupture. With the increase in the inclination angle of the cavity group, the AE energy fluctuation frequency at the peak stress increases, and the stress drop is obvious. The larger the cavity group inclination angle is, the more obvious the energy accumulation and the more severe the rock damage; when the cavity group angle is 30° or 75°, the peak strain of the local area below the strip-shaped through-going fracture plane is approximately three times that when the cavity group angle is 45° and 60°, indicating that cracks are easily generated in the local area monitored by the strain gauge at this angle, and the further development of the cracks weakens the strength of the rock, thereby increasing the probability of major engineering quality damage. The research results will have important reference value for hazard prevention in underground engineering projects through rock with natural and artificial defects, including tunnels and air-raid shelters.

A Study on the Improvement of Fire Alarm System in Special Buildings Using Beacons in Edge Computing Environment (에지 컴퓨팅 환경에서 비콘을 활용한 특수건물 화재 경보 시스템 개선 방안 연구)

  • Lee, Tae Gyu;Choi, Kyeong Seo;Shin, Youn Soon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.217-224
    • /
    • 2022
  • Today, with the development of technology and industry, fire accidents in special buildings are increasing as special buildings increase. However, despite the rapid development of information and communication technology, human casualties are steadily occurring due to the underdeveloped and ineffective indoor fire alarm system. In this study, we confirmed that the existing indoor fire alarm system using acoustic alarm could not deliver a sufficiently large alarm to the in-room personnel. To improve this, we designed and implemented a fire alarm system using edge computing and beacons. The proposed improved fire alarm system consists of terminal sensor nodes, edge nodes, a user application, and a server. The terminal sensor nodes collect indoor environment data and send it to the edge node, and the edge node monitors whether a fire occurs through the transmitted sensor value. In addition, the edge node continuously generate beacon signals to collect information of smart devices with user applications installed within the signal range, store them in a server database, and send application push-type fire alarms to all in-room personnel based on the collected user information. As a result of conducting a signal valid range measurement experiment in a university building with dense lecture rooms, it was confirmed that device information was normally collected within the beacon signal range of the edge node and a fire alarm was quickly sent to specific users. Through this, it was confirmed that the "blind spot problem of the alarm" was solved by flexibly collecting information of visitors that changes time to time and sending the alarm to a smart device very adjacent to the people. In addition, through the analysis of the experimental results, a plan to effectively apply the proposed fire alarm system according to the characteristics of the indoor space was proposed.

Development of seawater inflow equations considering density difference between seawater and freshwater at the Nakdong River estuary (해담수 밀도차를 고려한 낙동강하굿둑 해수유입량 산정식 개발)

  • Jeong, Seokil;Lee, Sanguk;Hur, Young Teck;Kim, Youngsung;Kim, Hwa Young
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.383-392
    • /
    • 2022
  • The restoration of the Nakdong River estuary is one of the most important projects of the Ministry of Environment, Republic of Korea. A real-scale experiment of gate operation was executed from 2019 to 2020, and a pilot operation was performed in 2021. The gate of Nakdong River Estuary Barrier (NEB) is supposed to be continuously opened based on the experiment results. Many critical decisions should be made immediately during the experiment based on the real-time measured data and numerical analysis considering the seawater inflows. The decision-making sequence was made systematically with the accurate estimation of seawater inflow. The estimation of seawater inflow is the main research objective and the equations of seawater inflow were developed, reflecting the structural characteristics of NEB. The inflow equations were developed in two forms, overflow and underflow. ADCP (Acoustic Doppler Current Profiler) was used to measure seawater inflow, check the accuracy of the developed equations, and derive the flow coefficient. The comparison error of the developed equations was about 3% compared to the measured data.

An Analysis of Temperature Change and TI MI using Tissue Mimicking Phantom in Ultrasonic Examination (초음파검사에서 인체모의 매질팬텀을 이용한 온도 변화와 TI MI 분석)

  • Cheol-Min, Jeon;Jae-Bok, Han;Jong-Gil ,Kwak;Jong-Nam, Song
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.751-759
    • /
    • 2022
  • Currently, ultrasound examination for diagnostic ultrasound and health examination purposes is widely used, and it is showing an increasing trend due to the application of health insurance. However, the risk of ultrasound has not been clearly identified so far, and in this study, surface and deep temperature changes according to frequency and mode were measured by using a tissue mimicking phantom and TI and MI values were compared. A simulated phantom was manufactured by adding a small amount of kappa-caraginan powder with acoustic characteristics similar to that of the human body and potassium chloride for solidification, and the change of surface and depth temperature was measured using a surface thermometer and a probe thermometer. As a result, the convex probe using low frequency showed a higher temperature increase than the linear probe using high frequency, so there was a significant difference, and the temperature increase was the highest on the surface, and the depth of 1cm showed a temporary temperature increase, but there was no significant temperature change. There was no change in the deep temperature of 5 cm to 15 cm, and the TI and MI values did not change during the test time. Since only the surface temperature rose during the 15-minute test and there was no temperature change in the core, so it is not expected to show a temperature change that is harmful to the human body. However, it is thought that prolonged examination of one area may cause temperature rise, so it should be avoided.

Automatic detection and severity prediction of chronic kidney disease using machine learning classifiers (머신러닝 분류기를 사용한 만성콩팥병 자동 진단 및 중증도 예측 연구)

  • Jihyun Mun;Sunhee Kim;Myeong Ju Kim;Jiwon Ryu;Sejoong Kim;Minhwa Chung
    • Phonetics and Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.45-56
    • /
    • 2022
  • This paper proposes an optimal methodology for automatically diagnosing and predicting the severity of the chronic kidney disease (CKD) using patients' utterances. In patients with CKD, the voice changes due to the weakening of respiratory and laryngeal muscles and vocal fold edema. Previous studies have phonetically analyzed the voices of patients with CKD, but no studies have been conducted to classify the voices of patients. In this paper, the utterances of patients with CKD were classified using the variety of utterance types (sustained vowel, sentence, general sentence), the feature sets [handcrafted features, extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), CNN extracted features], and the classifiers (SVM, XGBoost). Total of 1,523 utterances which are 3 hours, 26 minutes, and 25 seconds long, are used. F1-score of 0.93 for automatically diagnosing a disease, 0.89 for a 3-classes problem, and 0.84 for a 5-classes problem were achieved. The highest performance was obtained when the combination of general sentence utterances, handcrafted feature set, and XGBoost was used. The result suggests that a general sentence utterance that can reflect all speakers' speech characteristics and an appropriate feature set extracted from there are adequate for the automatic classification of CKD patients' utterances.

Age classification of emergency callers based on behavioral speech utterance characteristics (발화행태 특징을 활용한 응급상황 신고자 연령분류)

  • Son, Guiyoung;Kwon, Soonil;Baik, Sungwook
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.6
    • /
    • pp.96-105
    • /
    • 2017
  • In this paper, we investigated the age classification from the speaker by analyzing the voice calls of the emergency center. We classified the adult and elderly from the call center calls using behavioral speech utterances and SVM(Support Vector Machine) which is a machine learning classifier. We selected two behavioral speech utterances through analysis of the call data from the emergency center: Silent Pause and Turn-taking latency. First, the criteria for age classification selected through analysis based on the behavioral speech utterances of the emergency call center and then it was significant(p <0.05) through statistical analysis. We analyzed 200 datasets (adult: 100, elderly: 100) by the 5 fold cross-validation using the SVM(Support Vector Machine) classifier. As a result, we achieved 70% accuracy using two behavioral speech utterances. It is higher accuracy than one behavioral speech utterance. These results can be suggested age classification as a new method which is used behavioral speech utterances and will be classified by combining acoustic information(MFCC) with new behavioral speech utterances of the real voice data in the further work. Furthermore, it will contribute to the development of the emergency situation judgment system related to the age classification.

Development of Pollutant Transport Model Working In GIS-based River Network Incorporating Acoustic Doppler Current Profiler Data (ADCP자료를 활용한 GIS기반의 하천 네트워크에서 오염물질의 이송거동모델 개발)

  • Kim, Dongsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.551-560
    • /
    • 2009
  • This paper describes a newly developed pollutant transport model named ARPTM which was designed to simulate the transport and characteristics of pollutant materials after an accidental spill in upstream of river system up to a given position in the downstream. In particular, the ARPTM incorporated ADCP data to compute longitudinal dispersion coefficient and advection velocity which are necessary to apply one-dimensional advection-dispersion equation. ARPTM was built on top of the geographic information system platforms to take advantage of the technology's capabilities to track geo-referenced processes and visualize the simulated results in conjunction with associated geographic layers such as digital maps. The ARPTM computes travel distance, time, and concentration of the pollutant cloud in the given flow path from the river network, after quickly finding path between the spill of the pollutant material and any concerned points in the downstream. ARPTM is closely connected with a recently developed GIS-based Arc River database that stores inputs and outputs of ARPTM. ARPTM thereby assembles measurements, modeling, and cyberinfrastructure components to create a useful cyber-tool for determining and visualizing the dynamics of the clouds of pollutants while dispersing in space and time. ARPTM is expected to be potentially used for building warning system for the transport of pollutant materials in a large basin.