• Title/Summary/Keyword: Acoustic Transfer Method

Search Result 180, Processing Time 0.027 seconds

Optimal sequencing of 1D acoustic system for sound transmission loss maximization using topology optimization method (전달손실 최대화를 위한 위상최적화기반 1차원 흡차음시스템의 최적 배열 설계)

  • Kim, Eun-Il;Lee, Joong-Seok;Kim, Yoon-Young;Kim, Jung-Soo;Kang, Yeon-June
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.309-314
    • /
    • 2007
  • Optimal layer sequencing of a multi-layered acoustical foam is solved to maximize its sound transmission loss. A foam consisting of air and poroelastic layers can be optimized when a limited amount of a poroelastic material is allowed. By formulating the sound transmission loss maximization problem as a one dimensional topology optimization problem, optimal layer sequencing and thickness were systematically found for several frequencies. For optimization, the transmission losses of air and poroelastic layers were calculated by the transfer matrix derived from Biot's theory. By interpolating five intrinsic parameters among several poroelastic material parameters, dear air-poroelastic layer distributions were obtained; no filtering or post-processing was necessary. The optimized foam layouts by the proposed method were shown to differ depending on the frequency of interest.

  • PDF

MEASUREMENT OF LONG IMPULSE RESPONSE BY USING A TIME-STRETCHED PULSE

  • Kim, Hack-Yoon;Asano, Futoshi;Suzuki, Yoiti;Sone, Toshio
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.867-872
    • /
    • 1994
  • The transfer function of an acoustic system, in general, often exhibits a wide dynamic range and a very long impulse response. The time-stretched pulse (TSP) proposed by Aoshima (ATSP) has a small peak-factor and is accordingly suitable for the measuring impulse responses. The pulse is not so suitable, however, for the measurement of impulse responses over a wide frequency range. In this paper, we try to generalize and optimize this method (OATSP). This makes the method applicable for measuring of impulse responses longer than the length of the TSP. An analysis of error in such a case is also shown. Finally, we discuss how to implement this technique in specific measurement conditins.

  • PDF

The Limit and Application of Two-microphone Impedance Tube Method to the Sound Transmission Loss Measurement of Sound Isolation Materials (차음재의 음향투과손실 측정에 Two-Microphone Impedance Tube Method의 적용과 한계)

  • Lee, Seung;Ahn, Min-Hong;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.883-888
    • /
    • 2002
  • This study describes the limit and application of the two-microphone impedance tube method to the sound transmission loss measurement of several sound isolation materials with different physical properties. For the sound isolation materials having small flexural rigidity, it is shown that the two-microphone impedance tube method is validated to practically measure the sound transmission loss. For the sound isolation materials having large flexural rigidity, on the other hand, it is found that the two-microphone impedance tube method is no longer valid to measure the sound transmission loss because the regions of resonance and mass law are moved into the higher frequencies. In addition, in order to accurately measure the sound transmission loss of sound isolation materials, their size should be decided based on the consideration of the effect of acoustic excitation on their vibration response.

  • PDF

Numerical Simulation of Head Related Transfer Functions and Sound Fields (수치해석을 이용한 머리전달함수의 계산 및 음장해석)

  • ;V. Kahana;P. A. Nelson;M. Petyt
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.94-103
    • /
    • 2001
  • The goal of using numerical methods in this study is two-fold: to replicate a set of measured, individualized HRTFs by a computer simulation, and also to visualise the resultant sound field around the head. Two methods can be wed: the Boundary Element Method (BEM) and the Infinite-Finite Element Method (IFEM). This paper presents the results of a preliminary study carried out on a KEMAR dummy-head, the geometry of which was captured with a high accuracy 3-D laser scanner and digitiser. The scanned computer model was converted to a few valid BEM and IFEM meshes with different polygon resolutions, enabling us to optimise the simulation for different frequency ranges. The results show a good agreement between simulations and measurements of the sound pressure at the blocked ear-canal of the dummy-head. The principle of reciprocity provides an effect method to simulate HRTF database. The BEM was also used to investigate the total sound field around the head, providing a tool to visualise the sound field for different arrangements of virtual acoustic imaging systems.

  • PDF

The Selection of Measurement Positions for BEM Based NAH Using a Non-conformal Hologram to Reduce the Reconstruction Error

  • Oey, Agustinus;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1018-1021
    • /
    • 2007
  • This paper explores the use of BEM based NAH to reconstruct the surface vibration of a plate in a rectangular finite cavity, in which the distances between sensors and the nearest points on the source surface are not equal. In such circumstances, different degree of information on propagating and non-propagating wave components will be detected by sensors at different positions, as well as the influence of measurement noise will vary significantly from the nearest points of measurement to the farthest ones. On the other hand, the condition number of the vibro-acoustic transfer function matrix relating normal surface velocities and field pressures will becomes high, numerically indicating an increase of linear dependency between rows of transfer function matrix. The combination of poor measurement and high condition number will result inaccurate reconstruction. Therefore, one approach to be investigated in this work is to select the measurement positions in such ways that reduce measurement redundancy, as it indicated by the condition number. The improvement is found to be significant in the numerical simulations utilizing two different criterions, spanning from over-determined to under-determined cases, and in the validation experiment.

  • PDF

A Study on the Acoustic Properties of the Reticulated Plastic Foams (플라스틱 폼의 음향특성 조사)

  • 정성수;황철호
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.333-339
    • /
    • 1996
  • The absorption coefficients of 3 largely reticulated urethan foams are measured by transfer function method which uses two microphones in an impedance tube. Based on the previously published data, the new modified empirical equations for predicting the characteristic impedance and propagation constant of the largely reticulated urethane foams are developed. Comparison is made between the measured data and the predicted data, based on the previously published equations and the new equation. Good agreement of the absorption coefficient between the measured and predicted data by the new modified empirical equation has been obtained.

  • PDF

Radiated Noise Analysis of Marine Diesel Engine from Structural Vibration (선박용 디젤 엔진의 구조진동에 의한 방사소음 해석)

  • Kim, Dae-Hwan;Hong, Chin-Suk;Jeong, Weui-Bong;Park, Jeong-Geun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1060-1065
    • /
    • 2007
  • This paper summarizes a design procedure of radiated noise from engine blocks of marine engines. This air-borne noise is one of the significant noise contributors including the aeroacoustic noise due to intake and exhaust and the re-radiation due to structure-borne noise. Excitation forces by engine operations are evaluated taking into account the power generation mechanism from the burning process to the subsequence motion of internal parts; piston, connecting rod, and crank shaft. The acoustic transfer vector method is incorporated to effectively simulate the radiated noise field under the various operation conditions. A contribution analysis for the various excitations to the radiated noise is conducted. It is found that the firing pressure is the main source of the radiated noise, and so the structure of the cylinder can be modified to significantly reduce the radiated noise from the engine block.

  • PDF

A Study on the Radiated Noise of a Shaft-Plate System By an Axial Force (축방향력에 의한 축 플레이트계의 방사소음에 관한 연구)

  • ;Grosh, Karl
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.524-529
    • /
    • 1998
  • Analogous problem for a gear dynamics where helical gears excite logitudinal forces in the shaft is studied. These shaft forces excite the supporting gear housing through bearing, causing structural vibration. In this study, shaft is modeled as a rod, and bearing is modeled by a massless spring. A simple model for gear housing is a clamped circular plate. To model this force transmission, the transfer functions from the shaft to a clamped circular plate are analytically derived by using the spectral method and four-pole parameter. Finally, radiated noise is computed, using the acoustic relations due to plate surface vibration.

Numerical Simulation on Thermoacoustic Instability in the Dump Combustor (덤프 연소기에서의 열음향 불안정에 관한 수치적 연구)

  • Kim, Hyeon-Jun;Bae, Soo-Ho;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.294-301
    • /
    • 2005
  • The instabilities in rocket engines and gas turbine combustors due to the interaction between the fluid flow (acoustics) and the heat transfer (thermal energy) are called thermoacoustic or combustion instabilities. Almost all analysis assumes constant hot section temperature for Modern mathematical analysis of acoustic oscillations in Rijke type devices. However, it is impossible to predict whether a system is stable or not because the flame or heater response model can have a dramatic effect on predicted growth rates. In this study, A standard ${\kappa}-{\varepsilon}$ turbulent model and hybrid combustion model(eddy breakup model and chemical reaction) were used. After steady solution was gotten, unsteady calculation is simulated by perturbating on pressure boundary. As a result, we obtained the relationship of equivalence ratio and frequency by numerical simulation, and they are comparable to the experimental result. In addition, in spite of these results, there are limitations of using turbulent and combustion model in simulation method of thermoacoutic instability

  • PDF

Acoustic Model-Based Filter Structure for Synthesizing Speech Signals

  • Lim, Il-Taek;Lee, Byeong-Gi
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.1021-1026
    • /
    • 1994
  • This paper proposes a filter structure suitable for speech synthesis applications. We first derive the lossy pole-zero model by employing the wave digital filter(WDF) adaptor formula, and by converting the fixed termination value - 1 into a loss factor $\mu$c$\in$(-1, 1). Then we discuss how to determine the reflection We employ the Durbin's method in estimating the numerator polynomial of the lossy pole-zero transfer function from the given speech sound, and then apply the step-down algorithm on the numerator to extract the reflection coefficients of the closed-termination tract. For determining the reflection coefficients of the other parts we employ a pre-calculated pole-estimator polynomial.

  • PDF