• Title/Summary/Keyword: Acoustic Sensor Systems

Search Result 108, Processing Time 0.026 seconds

A Fault Detection Scheme in Acoustic Sensor Systems Using Multiple Acoustic Sensors (다중 센서를 이용한 음향 센서 시스템의 고장 진단)

  • Oh, Won-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.203-208
    • /
    • 2016
  • This paper presents a fault detection and data processing algorithm for acoustic sensor systems using the multiple sensor algorithm that has originally developed for the wireless sensor nodes. The multiple sensor algorithm can increase the reliability of the sensor systems by utilizing and comparing the measurements of the multiple sensors. In the acoustic sensor system, the equivalent sound level($L_{eq}$) is used to detect the faulty sensor. The experiment was conducted to demonstrate the feasibility of the multiple acoustic sensor algorithm, and the results show that the algorithm can detect the faulty sensor and validate the data.

Development of Waterproof Acoustic Sensor for Shockwave Measurement (탄환 충격파 측정용 방수 음향센서 개발)

  • Hur, Shin;Lee, Duck-Gyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.318-322
    • /
    • 2019
  • In shooting training, an impact point identification system that uses the impact wave of the bullet to check the impact point in the target plate has been recently used. Acoustic sensors used in these systems must be able to detect shock waves of high sound pressure levels and be both waterproof and dustproof for rainy weather and dusty environments, respectively. In this study, membranes with excellent waterproof, dustproof, and sound transmitting characteristics were selected through a characteristics test; a protection cap was installed to install the selected materials. After coupling the produced protection cap to the acoustic sensor housing, the sensitivity and phase characteristics of the acoustic sensor were checked. Through the waterproof and dustproof test, the performances of its sensitivity and phase characteristics were confirmed. Finally, the normal shockwave of a 5.56 mm diameter bullet was measured using a shockwave detection signal collecting plate equipped with a prototype of the acoustic sensor at a 100 m firing range.

On the use of an acoustic sensor for measuring the level of a zinc pot (용융아연욕 탕면 높이 측정을 위한 초음파 센서의 사용에 관하여)

  • 박상덕;임태균;이옥산
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.836-839
    • /
    • 1996
  • Throughout CGL (Continuous Galvanizing Line) in steel works, zinc-coated steel sheets are produced which are used where long-running corrosion resistivity is required. During the galvanizing process, top dross is created and floated on the zinc pot. Because the dross leaves ill patterns on the coated sheets, a robot system is developed to automatically collect and remove the top dross. It consists of a robot and its carriage system, a pot level sensor, a system controller, and special robot tools. For the first time the level of zinc pot must be measured and fed back to the robot controller to avoid submersion of the robot hand into the hot zinc pot. In this paper, acoustic distance sensor is tested as a candidate for the pot level sensor in the view point of hot environment. Some considerations on the use of the acoustic distance sensor will be denoted.

  • PDF

On Addressing Network Synchronization in Object Tracking with Multi-modal Sensors

  • Jung, Sang-Kil;Lee, Jin-Seok;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.4
    • /
    • pp.344-365
    • /
    • 2009
  • The performance of a tracking system is greatly increased if multiple types of sensors are combined to achieve the objective of the tracking instead of relying on single type of sensor. To conduct the multi-modal tracking, we have previously developed a multi-modal sensor-based tracking model where acoustic sensors mainly track the objects and visual sensors compensate the tracking errors [1]. In this paper, we find a network synchronization problem appearing in the developed tracking system. The problem is caused by the different location and traffic characteristics of multi-modal sensors and non-synchronized arrival of the captured sensor data at a processing server. To effectively deliver the sensor data, we propose a time-based packet aggregation algorithm where the acoustic sensor data are aggregated based on the sampling time and sent to the server. The delivered acoustic sensor data is then compensated by visual images to correct the tracking errors and such a compensation process improves the tracking accuracy in ideal case. However, in real situations, the tracking improvement from visual compensation can be severely degraded due to the aforementioned network synchronization problem, the impact of which is analyzed by simulations in this paper. To resolve the network synchronization problem, we differentiate the service level of sensor traffic based on Weight Round Robin (WRR) scheduling at the routers. The weighting factor allocated to each queue is calculated by a proposed Delay-based Weight Allocation (DWA) algorithm. From the simulations, we show the traffic differentiation model can mitigate the non-synchronization of sensor data. Finally, we analyze expected traffic behaviors of the tracking system in terms of acoustic sampling interval and visual image size.

PD Characteristics in C-GIS Using AE Sensor (AE Sensor를 적용한 C-GIS내의 PD 특성)

  • Lee, Yong-Hee;Shin, Yang-Sop;Jang, Su-Hyeong;Seo, Jung-Min;Lee, Yong-Hee;Lim, Ki-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1652-1654
    • /
    • 2002
  • The defects making partial discharge(PD) in a C-GIS(Cubicle Insulated Switchgear) initiate acoustic wave which can be detected using acoustic emission sensor placed outside or inside the C-GIS enclosure. In this paper, partial discharge property for 2 locations for AE sensor and 3 locations for defects in C-GIS are presented and PD waveforms were analyzed by PRPDA(Partial Resolved Partial Discharge Analysis). As a result, using post amplifier having gain of 10,000 and band pass filter having $20kHz{\sim}300kHz$, resolution of waveforms AE sensor signal by detected was good. Noise level was about 80 mV.

  • PDF

Learning-based Improvement of CFAR Algorithm for Increasing Node-level Event Detection Performance in Acoustic Sensor Networks (음향 센서 네트워크에서의 노드 레벨 이벤트 탐지 성능향상을 위한 학습 기반 CFAR 알고리즘 개선)

  • Kim, Youngsoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.243-249
    • /
    • 2020
  • Event detection in wireless sensor networks is a key requirement in many applications. Acoustic sensors are one of the most frequently used sensors for event detection in sensor networks, but they are sensitive and difficult to handle because they vary greatly depending on the environment and target characteristics of the sensor field. In this paper, we propose a learning-based improvement of CFAR algorithm for increasing node-level event detection performance in acoustic sensor networks, and verify the effectiveness of the designed algorithm by comparing and evaluating the event detection performance with other algorithms. Our experimental results demonstrate the superiority of the proposed algorithm by increasing the detection accuracy by more than 45.16% by significantly reducing false positives by 7.97 times while slightly increasing the false negative compared to the existing algorithm.

Development of acoustic emission sensor using piezoelectric elements and monitoring system for polishing process (압전소자를 이용한 AE센서 및 연마공정 감시장치 개발)

  • 김정돈;김성렬;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.560-565
    • /
    • 2001
  • Recently, machining process monitoring technique based on AE(acoustic emission) signal is used widely and becomes very important technique in machining process for improving the efficiency and the confidence of the systems. In this study, we fabricated a cheap acoustic emission sensor and monitoring system and estimated the properties of them through comparing with commercial AE sensor systems. In addition, we evaluated the performance of the fabricated sensor in polishing process. Futhermore, we are scheduled to develop the multi-point polishing process monitoring system through fabrication of the more AE sensors and complement of the monitoring system.

  • PDF

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Finite Element Analysis for Acoustic Characteristics of Piezoelectric Underwater Acoustic Sensors (압전 수중음향센서 음향특성의 유한요소해석)

  • 김재환;손선봉;조철희;조치영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.68-76
    • /
    • 2001
  • Sonar is the system that detects objects and finds their location in water by using the echo ranging technique. In order to have excellent performance in variable environment, acoustic characteristics of this system must be analyzed accurately. In this paper, based on the finite element analysis, modeling and analysis of acoustic characteristics of underwater acoustic sensors are preformed. Couplings between piezoelectric and elastic materials, and fluid and structure systems associated with the modeling of piezoelectric underwater acoustic sensors are formulated. In the finite element modeling of unbounded acoustic fluid, IWEE (Infinite Eave Envelop Element) is adopted to take into account the infinite domain. When an incidence wave excites the surface of Tonpilz underwater acoustic sensor, the scattered wave on the sensor is founded by satisfying the radiation condition at the artificial boundary approximately. Based on this scattering analysis, the electrical response of the underwater acoustic sensor under incidence, so called RVS (Receiving Voltage Signal) is founded accurately. This will devote to design Sonar systems accurately.

  • PDF