• Title/Summary/Keyword: Acoustic Problem

Search Result 454, Processing Time 0.022 seconds

Time harmonic wave propagation in a nonhomogeneous medium

  • Anar, I.Ethem
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.177-186
    • /
    • 1996
  • Colton and Wendland [1] have considered acoustic wave propagations in a spherically symmetric medium. They used constructive method for in a spherically symmetric medium. They used constructive method for solving the exterior Neumann problem. Jones [2] has derived an integral equation for the exterior acoustic problem. Jones has also discussed analytical and numerical solution of the acoustic problem.

  • PDF

The Analysis of Noise using of Inverse Problem in Acoustic Field (역문제를 이용한 음향장내의 소음해석)

  • 박성완
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.66-75
    • /
    • 1999
  • This paper is concerned with a analysis of noise by inverse problem available for analyzing the two and three-dimensional acoustic field problems. The noise of analysis considered in this study can be reduced to an optimum problem to find the optimal set of parameters defining the vibrating state of noise source surfaces. The optimal set of parameters are searched by the standard optimization procedure minimizing the square sum of the residuals between the measured and computed quantities of sound pressure at some points in the acoustic field. Computation is carried out for typical examples in which the noise sources are located on the infinite plane. It is demonstrated that the noise of analysis can be effectively made by using the sensitive reference data.

  • PDF

Robust Energy Efficiency Power Allocation for Uplink OFDM-Based Cognitive Radio Networks

  • Zuo, Jiakuo;Dao, Van Phuong;Bao, Yongqiang;Fang, Shiliang;Zhao, Li;Zou, Cairong
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.506-509
    • /
    • 2014
  • This paper studies the energy efficiency power allocation for cognitive radio networks based on uplink orthogonal frequency-division multiplexing. The power allocation problem is intended to minimize the maximum energy efficiency measured by "Joule per bit" metric, under total power constraint and robust aggregate mutual interference power constraint. However, the above problem is non-convex. To make it solvable, an equivalent convex optimization problem is derived that can be solved by general fractional programming. Then, a robust energy efficiency power allocation scheme is presented. Simulation results corroborate the effectiveness of the proposed methods.

Energy-Efficiency Power Allocation for Cognitive Radio MIMO-OFDM Systems

  • Zuo, Jiakuo;Dao, Van Phuong;Bao, Yongqiang;Fang, Shiliang;Zhao, Li;Zou, Cairong
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.686-689
    • /
    • 2014
  • This paper studies energy-efficiency (EE) power allocation for cognitive radio MIMO-OFDM systems. Our aim is to minimize energy efficiency, measured by "Joule per bit" metric, while maintaining the minimal rate requirement of a secondary user under a total power constraint and mutual interference power constraints. However, since the formulated EE problem in this paper is non-convex, it is difficult to solve directly in general. To make it solvable, firstly we transform the original problem into an equivalent convex optimization problem via fractional programming. Then, the equivalent convex optimization problem is solved by a sequential quadratic programming algorithm. Finally, a new iterative energy-efficiency power allocation algorithm is presented. Numerical results show that the proposed method can obtain better EE performance than the maximizing capacity algorithm.

Investigation on Method Avoiding Non-uniqueness of Direct Boundary Element Method in Acoustic Wave Radiation Problem (음향방사문제에서 직접경계요소법의 비유일성 회피방법에 관한 고찰)

  • Kim, Kook-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2328-2333
    • /
    • 2010
  • A direct boundary element method(DBEM) is widely applied for various acoustic wave problems. But this method has numerically non-unique solutions around the eigenfrequencies of the interior Dirichlet problem for the region enveloped with the acoustic boundary. A CHIEF method had been generally adopted to resolve the non-uniqueness problem and a new technique called ICA-Ring method has been suggested recently. In this paper, the characteristics of two techniques for avoiding the non-uniqueness of DBEM are examined and numerical codes embodying both techniques are developed. Numerical calculations are also carried out for an uniformly pulsating sphere, of which the results are investigated by including the comparisons with theoretical solutions.

A Case Study on the Reduction of Noise and Vibration at the Backpass Heat Surface in the Power Plant Boiler (발전용 보일러 후부 전열면 소음진동 저감에 관한 연구)

  • Lee, Gyong-Soon;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.3
    • /
    • pp.54-59
    • /
    • 2008
  • The resonance of boiler is caused by exciting force in the gas path and it generates the vibration by the harmony of boiler's dimensional factor. According to trending toward the boiler of increasing capacity and a bigger size, it has a problem of the vibration at back-pass heating surfaces. We can predict such vibrations as comparison between vortex frequency and gas column's natural frequency. We can't rely on the method for the past decades because of changing parameters, such as an allowable error, gas temperature, gas velocity, Strouhal number. We can reduce the vibration to use the seasoning effect and change the operating condition in coal fired boiler but it's not essential solution. When the vibration occurred in the model boiler, we must measures the acoustic pressure and frequency of places for considering the means. So far, we confirmed the problem from field measures and theoretical analysis about the acoustic vibration of boiler. We installed anti-acoustic baffle in a existing boiler to change the acoustic natural frequency at the cavity, which results in reducing the acoustic vibration. The first, we prove that the acoustic resonance is caused by harmonizing vortex shedding frequency of tube heat surface with acoustic natural frequency of cavity in the range of 650~750 MW loads. The second, the acoustic resonance at the back-pass heating surface has the third order of acoustic natural frequency at the second economizer. We install five anti-acoustic baffles at the second economizer to reducing the resonance. We confirm considerably reducing the acoustic vibration of boiler during the commercial boiler.

  • PDF

Seafloor terrain detection from acoustic images utilizing the fast two-dimensional CMLD-CFAR

  • Wang, Jiaqi;Li, Haisen;Du, Weidong;Xing, Tianyao;Zhou, Tian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.187-193
    • /
    • 2021
  • In order to solve the problem of false terrains caused by environmental interferences and tunneling effect in the conventional multi-beam seafloor terrain detection, this paper proposed a seafloor topography detection method based on fast two-dimensional (2D) Censored Mean Level Detector-statistics Constant False Alarm Rate (CMLD-CFAR) method. The proposed method uses s cross-sliding window. The target occlusion phenomenon that occurs in multi-target environments can be eliminated by censoring some of the large cells of the reference cells, while the remaining reference cells are used to calculate the local threshold. The conventional 2D CMLD-CFAR methods need to estimate the background clutter power level for every pixel, thus increasing the computational burden significantly. In order to overcome this limitation, the proposed method uses a fast algorithm to select the Regions of Interest (ROI) based on a global threshold, while the rest pixels are distinguished as clutter directly. The proposed method is verified by experiments with real multi-beam data. The results show that the proposed method can effectively solve the problem of false terrain in a multi-beam terrain survey and achieve a high detection accuracy.

Trends of Underwater Communications and Channel Environment Characteristics (수중통신의 국내외 동향 및 채널환경특성)

  • Kim, Nam-Ri;Chung, Jea-Hak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.243-247
    • /
    • 2009
  • For obtaining high speed data rate, underwater acoustic communication has several problems by the different environmental problem compared to wireless communication. To overcome this problem, the research is going steadily. In this paper, the property of underwater acoustic channel is considered, and the explanation of recently various method of transmitting and receiving and the domestic and foreign trend of underwater acoustic communication are taken into account.

  • PDF

Structural-Acoustic Coupled Analysis of Buried Hydrophone System (매설형 하이드로폰 시스템의 구조-음향 연성 해석)

  • Seo, Hee-Seon;Cho, Yo-Han;Joh, Chee-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1090-1095
    • /
    • 2007
  • A study was carried out to investigate the fluid-structure interaction phenomena of buried hydrophone system that exposed complex loads due to handling, transportation and installation. The buried hydrophone system has necessarily neighborhood structures for installation. Because of the neighborhood structure, acoustic field is deformed. We analyze the piezoelectric-structural-acoustic coupled problem and the results to use a finite element analysis software, ANSYS, which has an coupled field analysis capability. The effect of the component of hydrophone system is revealed altogether in pressure distribution. So, we classify and analyze the problem by four different compositions for decomposition.

  • PDF

Structural-acoustic Coupled Analysis of Buried Hydrophone System (매설형 하이드로폰 시스템의 구조-음향 연성 해석)

  • Seo, Hee-Seon;Cho, Yo-Han;Joh, Chee-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.797-804
    • /
    • 2007
  • A study was carried out to investigate the fluid-structure interaction phenomena of buried hydrophone system that exposed complex loads due to handling, transportation and installation. The buried hydrophone system has necessarily neighborhood structures for installation. Because of the neighborhood structure, acoustic field is deformed. We analyze the piezoelectric-structural-acoustic coupled problem and the results to use a finite element analysis software, ANSYS, which has an coupled field analysis capability. The effect of the component of hydrophone system is revealed altogether in pressure distribution. So, we classify and analyze the problem by four different compositions for decomposition.