• Title/Summary/Keyword: Acoustic Pressure Response

Search Result 119, Processing Time 0.032 seconds

Vibration and Stress Analysis for Reactor Vessel Internals of Advanced Power Reactor 1400 due to Pulsation of Reactor Coolant Pump (원자로냉각재펌프 맥동에 대한 APR1400 원자로내부구조물의 진동 및 응력 해석)

  • Kim, Kyu-Hyung;Ko, Do-Young;Kim, Sung-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.221-226
    • /
    • 2011
  • The structural integrity of APR1400 reactor vessel internals has been being assessed referring the US Nuclear Regulatory Commission regulatory guide 1.20 comprehensive vibration assessment program. The program is composed of a vibration and stress analysis, a limited vibration measurement, and an inspection. This paper covers the vibration and stress analysis on the reactor vessel internals due to the pulsation of reactor coolant pump. 3-dimensional models to calculate the hydraulic loads and structural responses were built and the pressure distributions and the structural responses were predicted using ANSYS. The peak stress of the reactor vessel internals is much lower than the acceptance limit.

  • PDF

Parameters Estimation for Pseudo Loudspeaker attached to Closed-Box and Enhanced Closed-Box Modeling (밀폐박스 상태의 가상 라우드스피커 매개변수 규명법 및 개선된 밀폐박스 모델링)

  • Park, Seok-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.983-992
    • /
    • 2007
  • It was proposed to identify Thiele Small Parameters for loudspeaker attached to closed-box using known dynamic mass of moving parts. Also, enhanced PSPICE circuit model for closed-box loudspeaker system was proposed to more accurately simulate real closed-box loudspeaker system. Frequency dependent parameters were used to model voice coil inductor. Acoustic pressure response curves and electrical impedance curves were simulated and investigated by PSPICE circuit model according to compensation filter's parameters. Finally, proposed method is expected to be utilized for identification of pseudo Thiele Small parameters of microspeaker.

Simulation of a piezoelectric flextentional deep-water sonar transducer using a coupled FE-BEM (결합형 유한요소-경계요소 기법을 사용한 심해저용 압전형 유연성 쏘나 변환기의 시뮬레이션)

  • Jarng Soon Suck;Lee Je Hyeong;Ahn Heung Gu;Choi Heun Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.218-223
    • /
    • 1999
  • A piezoelectric flextentional deep-water sonar transducer has been simulated using a coupled FE-BEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with extern리 electrical excitation conditions as well as external acoustic pressure loading conditions. Different results are available such as steady-state frequency response for RX and TX, displacement modes, directivity patterns, back-scattering patterns, resonant frequencies, bandwidths, quality factors, transmitting voltage (TV) responses, input receiving sensitivity (RS) responses. White the present barrel-stave typed sonar transducer of the piezoelectric material is being simulated, the external surface of the transducer is modified in order to allow the same water pressure to be applied to the inner and the outer surfaces of the transducer. With this modification for deep-water application, the resonance frequency of the modified flextentional sonar transducer becomes much lower than that of the unmodified flextentional sonar transducer. The results of the present sonar transducer modelling are also compared with those of a commercial package such as ATILA.

  • PDF

Acoustic and Electrical Analysis of Microspeaker for Mobile Phones (모바일 폰용 마이크로스피커의 음향 및 전기 해석)

  • Park, Seok-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.525-536
    • /
    • 2014
  • In this paper, GUI program for microspeaker system simulation program was developed and verified through closed box, vent box and 6th order bandpass enclosure system. By using the pseudo loudspeaker model concept, TS parameters and rear volume of microspeaker were identified. Their suitabilities were proved by comparing test results with simulations of electrical impedance and sound pressure response curves for the three box types; closed box, vent box and 6th order bandpass box. Also, MSSP was found to be effective regardless of the microspeaker's shape, either circular or rectangular shape. MSSP can be used for the microspeaker system simulation, and can give a general prediction of such as; sound pressure level curve, electrical impedance, diaphragm velocity and displacement curve according to multiple design parameters; diaphragm mass, compliance, force factor, front and rear volume, front and rear port's diameter and length.

Comparison of Human Responses to Transportation Noise in Monaural and Binaural Hearing, Part I: Measurement and Analysis (교통소음의 모노럴과 바이노럴 청감 비교 연구 I: 측정 및 분석)

  • Kim, Jaehwan;Lim, Chang-Woo;Jeong, Wontae;Hong, Jiyoung;Cheung, Wansup;Lee, Soogab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1268-1278
    • /
    • 2004
  • Measurement of noise is not only to know the information of acoustic pressure but to assess human response to noise. To find human response to transportation noise through the laboratory study we have to measure and reproduce noise. The method of noise reproduction is largely divided into monaural and binaural techniques. But human fundamentally hears sound through both ears, referred as binaural hearing. Binaural signal is different from monaural signal because it includes more information of physical phenomena like acoustical reflection, diffraction and refraction. Especially head and pinna play an important role in perceiving change of signal origin. So, the amplitude of binaural signal is higher than that of monaural signal and spectrum of both signals is discriminated. Most of assessment and regulation of transportation noise are, however, based on monaural measurement techniques. The quantitative difference between monaural and binaural measurement is investigated in this study. Comparison on several transportation noisesshows defect of information in monaural measurements.

Study on the Measurements of Architectural Acoustie by Cross-Correlation Methods (상호상관법에 의한 건축음향측정에 관한 연구)

  • Park, Byoung-Jeon;Shin, Young-Moo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.42-52
    • /
    • 1990
  • A method of measuring impulse response of acoustic system, two kinds of cross-correlation methods (the direct correlation method and the M-sequence modulation correlation method) were applied. According to the direct correlation method, by using stationary random noise source and by calculating the cross-correlation function between the sourece and the output signal, equivalent impulse response can be obtained not being influenced by the back ground noises. By applying this method, the measurement of echo-time patterns in rooms and oblique incident sound absorption characteristics of sound absorbing materials was carried out. In the case of the M-sequence modulation correlation method which was contrived by Aoshima, an intermittent random nosie modulated by M-sequence signal is used as the source signal, and the cross-correlation function between the M-sequence signal and the squared output signal is calculated. According to this method, equivalent energy impulse response (squared impulse response) of te propagation system can be obtained without being influenced by the back ground noises and the air fluctuation caused by wind. As the applcaition of this measuring method to the architectural acoustics, the meaurements of echo-time patterns, reverberation decays and sound pressure lev디 distributions in rooms and sound insulation efficiencies in buildings were carried out. From these experimental studies, it has been found that this M-sequence modulation correlation method is markedly useful especially for the field masurement of sound insulation under high back ground noise condition.

  • PDF

Application of sound scattering models to swimbladdered fish, red seabream (Chrysophys major)

  • Kang Donhyug;Hwang Doojin;Na Jungyul;Kim Suam
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.233-236
    • /
    • 2000
  • The acoustical response of fish depends on size and physical structure na, most important, on the presence or absence of a swimbladder. Acoustic scattering models for swimbladdered fish represent a fish by an ideal pressure-release surface having the size and shape as the swimbladder. Target strength experiments of red seabream (Chrysophrys major) have been conducted using 38 (split-beam), 120 (split-beam) and 200kHz (dual-beam) frequencies. At each start of each experiment, the live fish are placed in the cage at the surface, then the cage is lowed to about $4{\cal}m$ depth where it remains during the measurements. To test the acoustic models, predictions of target strength based on swimbladder morphometries of 10 red seabream offish total length from $103{\cal}mm{\;}to{\;}349{\cal}mm$ ($3 <$TL/\lambda$ < 45)are compared with conventional target strength measurements on the same, shock-frozen immediately after caged experiments. X-ray was projected along dorsal aspect to know the morphological construction of swimbladder. and fish body. At high frequencies, Helmholtz-kirchhoff(HK) approximation would greatly enhance swimbladdered fish modeling. Sound scattering model [HK-ray approximation model] for comparison to experimental target strength data was used to model backscatter measurements from individual fish. The scattering data can be used in the inverse method along with multiple frequency sonar systems to investigate the adequacy of classification and identification of fish

  • PDF

A Study on the Transducer Calibration for Acoustic Emission Measurement (AE 측정을 위한 탐촉자의 보정에 대한 고찰)

  • 김교원
    • The Journal of Engineering Geology
    • /
    • v.6 no.2
    • /
    • pp.53-58
    • /
    • 1996
  • In order to investigate the source mechanism of micro cracks through acoustic emission measurement induced by rock fracture, careful calibration of the entire linkage of the detecting system, from the transducers to transient recorder, is an essential requirement prior to testing. Transducers and digitiging system are generally the weakest links in the measurement system because they must translate mechanical motions into digital electric signals. In this study, PAC piezoelectric pressure transducers are calibrated with a standard NBS conical shaped displacement transducer and a DG piezoelectric displacement transducer. The NBS and PAC transducers are insensitive to changes in horizontal impingement angle but sensitive to changes in incident angle. The ray path along the logitudinal axis of the tranducer produced a maximum response while the ray path perpendicular to the transducer axis gave a minimum. And a difference in individual transducers factor for a peak-to-peak amplitude of PAC transducers was within 40%. An average PAC transducer coefficient was determined as 77mv/pm by an absolute calibration test using NBS transducer.

  • PDF

Circular Holes Punched in a Magnetic Circuit used in Microspeakers to Reduce Flux Leakage

  • Xu, Dan-Ping;Jiang, Yuan-Wu;Lu, Han-Wen;Kwon, Joong-Hak;Hwang, Sang-Moon
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.387-392
    • /
    • 2016
  • Lower flux leakage designs have become important in the development of microspeakers used in thin and miniaturized mobile phones. We propose four methods to reduce the flux leakage of the magnetic circuit in a microspeaker. Optimization was performed based on the proposed approach by using the response surface method. Electromagnetic analyses were conducted using the finite element method. Experimental results are in good agreement with the simulated results obtained in one degree-of-freedom analysis from 100 to 5 kHz. Both the simulated and experimental results confirm that one of the proposed methods is much more effective in reducing flux leakage than the other methods. In the optimized method, compared with a default approach, the average radial flux density in the air gap decreased only by 5.5%, the maximum flux leakage was reduced by 28.6%, and the acoustic performance at primary resonance decreased by 0.45 dB, which gap is indiscernible to the human ear.

Vibration Effect for Branch Pipe System due to Main Steam Header Pulsation (주증기 배관 헤더의 맥동이 분기 배관에 미치는 영향)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.780-785
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of a nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve or heather generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 7nn nuclear power plant. The exciting sources and response or the piping system are investigated by using on site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3Hz, 4.4Hz and 6.6Hz transferred from main steam header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness were installed to reduce excessive vibration.

  • PDF