• Title/Summary/Keyword: Acoustic Prediction Filter

Search Result 18, Processing Time 0.025 seconds

Vocal Tract Modeling with Unfixed Sectionlength Acoustic Tubes(USLAT) (비고정 구간 길이 음향 튜브를 이용한 성도 모델링)

  • Kim, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1126-1130
    • /
    • 2010
  • Speech production can be viewed as a filtering operation in which a sound source excites a vocal tract filter. The vocal tract is modeled as a chain of cylinders of varying cross-sectional area in linear prediction acoustic tube modeling. In this modeling the most common implementation assumes equal length of tube sections. Therefore, to model complex vocal tract shapes, a large number of tube sections are needed. This paper proposes a new vocal tract model with unfixed sectionlengths, which uses the reduced lattice filter for modeling the vocal tract. This model transforms the lattice filter to reduced structure and the Burg algorithm to modified version. When the conventional and the proposed models are implemented with the same order of linear prediction analysis, the proposed model can produce more accurate results than the conventional one. To implement a system within similar accuracy level, it may be possible to reduce the stages of the lattice filter structure. The proposed model produces the more similar vocal tract shape than the conventional one.

The Determination of Transducer Locations for Active Structural Acoustic Control of the Radiated Sound from Vibrating Plate (평판에서 방사되는 소음의 능동구조소음제어를 위한 변환기의 위치결정)

  • 김흥섭;홍진석;이충휘;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.694-701
    • /
    • 2002
  • In this paper, through the study on locations of structural transducers for active control of the radiated sound from the vibrating plate, the active structural acoustic control (ASAC) system is proposed. And, for the evaluation of the proposed location, the experiment of the active structural acoustic control is implemented using the multi-channel filtered-x LMS algorithm and an additional filter (Acoustic Prediction Filter) to estimate the radiated sound using the acceleration signals of the plate. The structural transducers are piezoceramic actuator (PZT) and accelerometer. PZT is used as an actuator to reduce the vibration and the radiated sound. To maximize the control performance, each PZT actuator is located at the position that has the largest control sensitivity of the plate bending moment in the direction of x and y coordinates and the optimal PZT location is validated experimentally. Also, to find the acoustic prediction filter accurately, two accelerometers are located at the positions that have the largest radiation efficiencies of the plate, and the proposed locations are validated by simulation using the Rayleigh integral. The multi-channel filtered-x LMS algorithm is introduced to control a complex 2-D structural vibration mode. Finding the locations of structural transducers for active structural acoustic control of the radiated sound, the active structural acoustic control (ASAC) system can be presented and validated by experiments using a real time control system.

Quasi-Optimal Linear Recursive DOA Tracking of Moving Acoustic Source for Cognitive Robot Auditory System (인지로봇 청각시스템을 위한 의사최적 이동음원 도래각 추적 필터)

  • Han, Seul-Ki;Ra, Won-Sang;Whang, Ick-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • This paper proposes a quasi-optimal linear DOA (Direction-of-Arrival) estimator which is necessary for the development of a real-time robot auditory system tracking moving acoustic source. It is well known that the use of conventional nonlinear filtering schemes may result in the severe performance degradation of DOA estimation and not be preferable for real-time implementation. These are mainly due to the inherent nonlinearity of the acoustic signal model used for DOA estimation. This motivates us to consider a new uncertain linear acoustic signal model based on the linear prediction relation of a noisy sinusoid. Using the suggested measurement model, it is shown that the resultant DOA estimation problem is cast into the NCRKF (Non-Conservative Robust Kalman Filtering) problem [12]. NCRKF-based DOA estimator provides reliable DOA estimates of a fast moving acoustic source in spite of using the noise-corrupted measurement matrix in the filter recursion and, as well, it is suitable for real-time implementation because of its linear recursive filter structure. The computational efficiency and DOA estimation performance of the proposed method are evaluated through the computer simulations.

An Acoustic Echo Canceller By Using the Reduced Lattice Filter Structure (축소격자필터 구조를 사용한 음향반향제거기)

  • 유재하;조성호;윤대희;차일환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1473-1480
    • /
    • 1995
  • When the LMS algorithm is employed in the transversal filter structure, the computational complexity can be kept reasonably low. However, if the impulse response to be estimated is very long or signals involved are highly correlated like a speech the convergence speed becomes slow. The lattice filter is an excellent alternative to improve convergence speed since the lattice structure inherently has the orthogonal property among the backward prediction errors, but at the expense of the excessive computational load. If the input signal to be used can be sufficiently well modeled as a .RHO.-th order autoregressive(AR) process, the reflection coefficients after the .RHO.- th stage will be close to zero. Then, instead of employing the full lattice structure, the joint lattice filter structure can be implemented in conjunction with the transversal filter structure after the .RHO.-th stage. We propose, in this paper, this new lattice/transversal joint structure, and we will call it the reduced lattice filter. Using the reduced lattice filter, we are now able to achieve the performance as good as that of the lattice filter, while maintaining the complexity as low as that of the transversal filter. The proposed filter is particularly useful for an acoustic echo canceller due to the highly correlatedness nature of speeches and the long and frequently changing echo paths.

  • PDF

Acoustic based Two Dimensional Underwater Localization Considering Directional Ambiguity (방향 모호성을 고려한 수중 음향 기반의 2차원 위치 추정 기술 개발)

  • Choi, Jinwoo;Lee, Yeongjun;Jung, Jongdae;Park, Jeonghong;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.402-410
    • /
    • 2017
  • Acoustic based localization is essential to operate autonomous robotic systems in underwater environment where the use of sensorial data is limited. This paper proposes a localization method using artificial underwater acoustic sources. The proposed method acquires directional angles of acoustic sources using time difference of arrivals of two hydrophones. For this purpose, a probabilistic approach is used for accurate estimation of the time delay. Then, Gaussian sum filter based SLAM technique is used to localize both acoustic sources and underwater vehicle. It is performed by using bearing of acoustic sources as measurement and inertial sensors as prediction model. The proposed method can handle directional ambiguity of time difference based source localization by generating Gaussian models corresponding to possible locations of both front and back sides. Through these processes, the proposed method can provide reliable localization method for underwater vehicles without any prior information of source locations. The performance of the proposed method is verified by experimental results conducted in a real sea environment.

Acoustic Source Tracker Based on Pseudo-Linear DOA Estimator for Autonomous Robots (자율이동로봇 이동음원 추적센서 개발을 위한 의사선형 도래각 추정기법)

  • Lim, Jae-Il;Ra, Won-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1788-1789
    • /
    • 2011
  • In order to develop a one-axis gimbaled acoustic source tracker for mobile robots, a pseudo-linear direction of arrival(DOA) estimator is proposed using a linear ultrasonic sensor array. Under the assumption that the sensor measurement errors are negligible, a linear measurement model is derived using the linear prediction relation of the received sinusoidal acoustic signals. Applying the Kalman filtering technique for this model, the linear recursive DOA estimator is designed. For its linear recursive filter structure, it is preferable for real-time implementation on a commercial DSP. Through the experiments, the effectiveness of the suggested method is demonstrated.

  • PDF

Design of an Acoustic band Interpolator for Underwater Sensor Nodes (수중 센서 노드를 위한 음파 대역 인터폴레이터 설계)

  • Kim, Sunhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.93-98
    • /
    • 2020
  • Research on underwater sensor networks is increasing due to such reasons as marine resource management, maritime disaster prediction and military protection. Many underwater sensor networks performs wireless communication using an acoustic sound wave band signal having a relatively low frequency. So the digital part of their modem can take charge of carrier band signal processing. To enable this, the sampling rate of the baseband band signal should be increased to a sampling rate at which carrier band signal processing is possible. In this paper, we designed a sampling rate increasing circuit based on a CIC interpolator for underwater sensor nodes. The CIC interpolator has a simple circuit structure. However, since the CIC interpolator has a large attenuation of the pass band and a wide transition band, an inverse sinc LPF is added to compensate for frequency response of the CIC interpolator. The proposed interpolator was verified in time domain and frequency domain using ModelSim and Matlab.

An improved regularized particle filter for remaining useful life prediction in nuclear plant electric gate valves

  • Xu, Ren-yi;Wang, Hang;Peng, Min-jun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2107-2119
    • /
    • 2022
  • Accurate remaining useful life (RUL) prediction for critical components of nuclear power equipment is an important way to realize aging management of nuclear power equipment. The electric gate valve is one of the most safety-critical and widely distributed mechanical equipment in nuclear power installations. However, the electric gate valve's extended service in nuclear installations causes aging and degradation induced by crack propagation and leakages. Hence, it is necessary to develop a robust RUL prediction method to evaluate its operating state. Although the particle filter(PF) algorithm and its variants can deal with this nonlinear problem effectively, they suffer from severe particle degeneracy and depletion, which leads to its sub-optimal performance. In this study, we combined the whale algorithm with regularized particle filtering(RPF) to rationalize the particle distribution before resampling, so as to solve the problem of particle degradation, and for valve RUL prediction. The valve's crack propagation is studied using the RPF approach, which takes the Paris Law as a condition function. The crack growth is observed and updated using the root-mean-square (RMS) signal collected from the acoustic emission sensor. At the same time, the proposed method is compared with other optimization algorithms, such as particle swarm optimization algorithm, and verified by the realistic valve aging experimental data. The conclusion shows that the proposed method can effectively predict and analyze the typical valve degradation patterns.

Reactive Acoustic Filter based on the Phase Cancellation Effect (위상 반전 현상을 이용한 덕트 소음 제거기)

  • 강종민
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.600-606
    • /
    • 1999
  • A reactive type acoustic filter is developed based on the phase cancellation effect which is occurring in the plane wave propagation through the two paths where the cross sectional areas are reversely changing. The theory is experimentally validated by the use of a cylindrical duct and an inserted hollowed cone of which vertex part is eliminated. Noise attenuation and the filtered frequency are dependent on the area variation and the effective length of the filter. Experimental comparison shows that the filtered frequencies of 1st and 2nd mode are lower than the analytical prediction due to the mass loading effects, and the 3rd mode is in good agreement. The proposed filter can be applied as an in-duct noise filter for improving the sound quality in a narrow space for various industrial applications.

  • PDF

The Acoustic Performance Measurement of Silencers in Reflective Field (반사파가 존재하는 음향장에서의 소음기의 음향성능 측정)

  • Lee, Seong-Hyun;Ih, Jeong-Guon;Choi, Won-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.625-628
    • /
    • 2005
  • Silencers are extensively used for reducing noise in an exhaust system of internal combustion Engine and fluid machineries. The prediction and measurement of the transmission loss as the acoustic performance of silencers are important in early design stage. In the measurement of transmission loss, the semi-anechoic terminations are general used for reducing unwanted effects by reflecting wave. However it is very hard to remove reflecting wave perfectly. So the research about the error made by reflecting wave is important. The analysis about errors made by reflections and modification techniques are proposed. For an application example, the diesel particulate filter (DPF) is chosen. The transmission loss of DPF is measured with and without considerations of reflecting wave.

  • PDF