• Title/Summary/Keyword: Acoustic Potential Energy

Search Result 39, Processing Time 0.027 seconds

A method of Shaped Sound Focusing Using Multiple Monopole Sources: Hollow Cylinder shape (다수의 단극 음원들을 이용한 속이 빈 실린더 형상의 응향 위치 에너지 집적공간 형성방법)

  • Park, Jin-Young;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.537-540
    • /
    • 2005
  • Shaped Sound Focusing is defined as the generation of acoustically bright zone with a certain shape in space using multiple sources. The acoustically bright zone is a spatially focused region with relatively high acoustic potential energy level. In view of the energy transfer, acoustic focusing using multiple sources is essential because acoustic energy is very small to use other type of energy. It can be done by taking optimization techniques which can be acoustic brigtness control and acoustic contrast control. But it has not been frequently concerned about several cases, so the case of hollow cylinder shaped sound focusing is adapted and there wi11 be arguments about available control variables and spatially controllable region in this case.

  • PDF

Effect of Boundary Condition Changes on the Sound Field (경계 조건이 음장에 미치는 영향)

  • 조성호;김양한;최성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1317-1322
    • /
    • 2001
  • What changes in the eigen values and eigen functions are produced if the boundary surface S is no longer rigid but has a specific acoustic admittance which may vary from point to point on S. In this paper, changes in eigen values and eigen functions are derived by using Kirchhoff-Helmholtz integral equation. And acoustic potential energy, which is representative measure describing the physical quantity in cavity, is defined. Acoustic potential energy can be divided into primary one and secondary one. Primary one is the acoustic potential energy through unchanged eigen functions, and secondary one is through changed eigen functions. Using these two term, we can find the eigenvalue problem, which gives the control performance when the boundary condition is changed.

  • PDF

Radiation Power Control by Means of Absorptive Material Arrangement in an Enclosure (흡음재 배치를 통한 닫힌 공간에서의 소음원 방사 파워 제어)

  • 조성호;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.688-691
    • /
    • 2004
  • We have studied the possibility of global noise reduction by the sound power control through selection of distribution and impedance of absorptive materials. It is necessary to investigate the relation between the global sound energy in the field and the total sound power radiated by sources. In the previous work (1,2), the authors presented a useful design method to change boundary condition that can be useful to reduce noise in acoustically small enclosures. The possibility of total acoustic potential energy reduction by acoustic source power control is examined in an acoustically small cavity. Using acoustic energy balance equation, the relation between global noise control performance and absorptive material's arrangement/impedance is deduced. Numerical simulation is performed to interpret its physical meaning in terms of absorbent's distribution and impedance.

  • PDF

Acoustic Source Power Control and Global Noise Reduction by Selection of Distribution and Impedance of Absorptive Materials in Acoustically Small Enclosures (흡음재의 배치와 임피던스 선정을 통한 음원 방사파워 제어와 전역 소음 감소)

  • 김양한;조성호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.668-674
    • /
    • 2004
  • The possibility of global noise reduction by the sound power control through selection of distribution and impedance of absorptive materials is discussed. It is necessary to investigate the relation between the global sound energy in the field and the total sound power radiated by sources. In the previous work,$^{(1.2)}$ the authors presented a useful design method to change boundary condition that can be useful to reduce noise in acoustically small enclosures. Changing boundary condition Is related to not only enclosure’s geometrical shape but also acoustical treatment on walls for example, attaching of impedance patches (ex: absorptive material). In many practical situations, we often meet situation to change acoustical treatment on walls. The possibility of total acoustic potential energy(globa1 noise) reduction by acoustic source power control is examined in an acoustically small cavity Using acoustic energy balance equation, the relation between global noise control performance and absorptive material’s arrangement/impedance is deduced. Numerical simulation is performed to interpret its physical meaning in terms of absorbent’s distribution and impedance.

Generation of a plane-wave field by point focusing of acoustic potential energy on the radiation sphere in the wavenumber domain (파수 영역의 방사 구면에서 음향 에너지 집중을 통한 평면파 생성 방법)

  • Chang, Ji-Ho;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.820-823
    • /
    • 2007
  • In the wavenumber domain, each point on a radiation sphere indicates a plane wave of the frequency corresponding to radius of the sphere and the position on the sphere shows propagating direction of the plane wave. This concept is extended from the research by Choi[1] where he focus acoustic potential energy at a point on a radiation sphere. Here we propose the method to focus the energy at a point on the radiation sphere, as a result, we can easily generate a plane wave which propagates to any direction that we want.

  • PDF

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Active Noise Control In a Cylindrical Cavity (원통형 밀폐공간 내부의 능동소음제어)

  • Lee, Ho-Jun;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2302-2312
    • /
    • 2000
  • An active control of the transmission of noise through an aircraft fuselage is investigated numerically. A cylinder-cavity system was used as a model for this study. The fuselage is modeled as a fi nite, thin shel cylinder with constant thickness. The sound field generated by an exterior monopole source is transmitted into the cavity through the cylinder. Point force actuators on the cylinder are driven by error sensor that is placed in 3D cavity. Modal coupling theory is used to formulate the numerical models and describe the system behavior. Minimization of the acoustic potential energy in the fuselage is carried out as a performance index. Continuous parameter genetic algorithm is used to search the optimal actuator position and both results are compared.

Ring-shaped Sound Focusing using Wavenumber Domain Matching (파수영역매칭을 통한 링 형상의 음향집적공간 형성)

  • Park, Jin-Young;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.506-509
    • /
    • 2006
  • Shaped Sound Focusing is defined as the generation of acoustically bright shape in space using multiple sources. The acoustically bright shape is a spatially focused region with relatively high acoustic potential energy level. In view of the energy transfer, acoustical focusing is essential because acoustic energy is very small to use other type of energy. Practically, focused sound shape control not a point is meaningful because there are so many needs to enlarge the focal region especially in clinical uses and others. If focused sound shape can be controlled, it offers various kinds of solutions for clinical uses and others because a regional focusing is essentially needed to reduce a treatment time and enhance the performance of transducers. For making the shaped-sound field, control variables, such as a number of sources, excitation frequency, source positioning, etc., should be taken according to geometrical sound shape. To verify these relations between them, wavenumber domain matching method is suggested because wavenumber spectrum can provide the information of control variables of sources. In this paper, the procedures of shaped sound focusing using wavenumber domain matching and relations between control variables and geometrical sound shape are covered in case of an acoustical ring.

  • PDF

New Approach to MAC Protocol for Multiple AUV (수중 Multiple AUV를 위한 MAC 프로토콜 설계)

  • Cho, A-Ra;Park, Jong-Won;Kim, Seung-Geun;Choi, Young-Chol;Lim, Yong-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.213-216
    • /
    • 2007
  • The paper deals with a approach to underwater acoustic based Ad-hoc communication, which allows major design strategies for Media Access Control (MAC) within a group of the autonomous underwater vehicles(AUV). The proposed MAC aims at deploying AUV-centric star topology, which minimizes overhead of sensor nodes and improves energy-efficiency. Furthermore, that is also well under long and unknown propagation delays of the underwater acoustic medium. The implemented MAC protocol makes it easier to achieve frame synchronization than TDMA due to deploying localized schedule time, in addition to saving energy consumption by letting nodes sleep. It is also superior to MACA and MACAW in terms of propagation delay. This scalable centralized protocol has the potential to serve as a primer for development of MAC protocol for future underwater acoustic based ad-hoc networks.

  • PDF