• Title/Summary/Keyword: Acoustic Mode Synthesis

Search Result 7, Processing Time 0.025 seconds

Application of Substructure Synthesis Method for Analysis of Acoustic System (음향계의 해석을 위한 부분구조합성법의 적용)

  • 오재응;고상철;조용구
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.737-746
    • /
    • 1997
  • The substructure synthesis method is used for making it easy to analyze vibration systems generally in vibration field. In the past, this method has been to be used mainly because of shortage of computer memory and CPU time. But recently this method is used for analyzing complex structure or identifying the characteristics of systems precisely. The purpose of this study is to develop acoustic substructure synthesis method that can be applied to acoustic modal analysis of complex acoustic systems. Acoustic modal analysis method to be introduced here is a method that analyze acoustic natural mode shape of the complex acoustic system by the principle of CMS(component mode synthesis method). This paper describes the acoustic modal analysis of the acoustic finite element model of simple expansion pipe by acoustic substructure synthesis method. The resutls of acoustic modal analysis analyzed by Acoustic substructure synthesis method and the results by FEM(finite element method) shows good agreement.

  • PDF

Development of Acoustic Substructure Synthesis Method using Component Mode Synthesis Method (모드합성법을 이용한 음향부분구조합성법의 개발)

  • 고상철;조용구;오재응;김준태;김진오
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.118-123
    • /
    • 1996
  • The purpose of this study is to develop acoustic substructure synthesis method that can be applied to acoustic modal analysis of complex acoustic systems. Acoustic modal analysis method to be introduced here is a method that analyze acoustic natural mode shape of the complex acoustic system by the principle of CMS(component mode synthesis method). This paper describes the acoustic modal analysis of the acoustic finite element model of simple expansion pipe by acoustic substructure synthesis method. The results of acoustic modal analysis analyzed by Acoustic substructure synthesis method and the results, by FEM(finite element method) shows good agreement.

  • PDF

Acoustic Analysis of the Cavity in Rotary Compressor (로터리 압축기 내부의 소음해석)

  • 정의봉;김봉준;김재호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.97-103
    • /
    • 2000
  • Gas pulsation discharged from the cylinder causes noise in the rotary compressor. Mufflers are usually used to reduce the noise generated by the gas pulsation. The muffler has been designed to maximize the acoustic transmission loss of the muffler. The gas which went through muffler is discharged to the cavity in compressor. Thus, the acoustic characteristics of cavity should be taken into account in muffler design. In this paper, the program for the acoustic substructure synthesis method is developed. This program can be interfaced with SYSNOISE which is commercial acoustic package. Several types of mufflers designed to have the better acoustic performance are suggested in this work and compared with the existing commerical muffler in the compressor. The acoustic performance of mufflers taking into consideration of the cavity in the compressor is also carried out by the developed program.

  • PDF

Substructure/fluid subdomain coupling method for large vibroacoustic problems

  • El Maani, Rabii;El Hami, Abdelkhalak;Radi, Bouchaib
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.359-368
    • /
    • 2018
  • Dynamic analysis of complex and large structures may be costly from a numerical point of view. For coupled vibroacoustic finite element models, the importance of reducing the size becomes obvious because the fluid degrees of freedom must be added to the structural ones. In this paper, a component mode synthesis method is proposed for large vibroacoustic interaction problems. This method couples fluid subdomains and dynamical substructuring of Craig and Bampton type. The acoustic formulation is written in terms of the velocity potential, which implies several advantages: coupled algebraic systems remain symmetric, and a potential formulation allows a direct extension of Craig and Bampton's method to acoustics. Those properties make the proposed method easy to implement in an existing finite element code because the local numerical treatment of substructures and fluid subdomains is undifferentiated. Test cases are then presented for axisymmetric geometries. Numerical results tend to prove the validity and the efficiency of the proposed method.

Piezoelecttic and Acoustic Properties of Porous PZT Ceramics for Ultrasonic Transducer Aplications (초음파 변환기용 다공질 PZT 세라믹의 압전 및 음향 특성)

  • 박정학;주용관;최헌일;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.192-195
    • /
    • 1995
  • PZT powders were prepared by the molten salt synthesis method. The porous PZT was prepared from a mixture of PZT an polyvinylacohol(PVA) powders by BURPS(Burnout Plastic Sphere) technique. The piezolectirc and acoustic properties with various PVA wt% were studied, Piezoelectric coefficient d$\sub$33/ of porous PZT ceramics was almost same to that of single phase PZT ceramics, The thickness mode coupling factor k$\sub$t/ was 0.53~0.59 in comparable with the single phase PZT ceramics(k$\sub$t/=0.7)

  • PDF

Piezoelectric and Acoustic Properties of Porous PZT Ceramics (다공질 PZT 세라믹의 압전 및 음향 특성)

  • 박정학;최헌일;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.183-186
    • /
    • 1994
  • Porous piezoelectric ceramics of P7T have been newly developed to apply for transducers in an echo sounder PZT powders were prepared by the molten salt synthesis method. The porous PZT was prepared from a mixture of PZT and polyvinylalcohol(PVA) powders by BURPS(Burnout Plastic Sphere) technique. The piezoelectric and acoustic properties with various PVA wt.% have studied. The density of porous PZT ceramics was decreased linearly with increasing the PVA sphere wt.%. Piezoelectric coefficient d$\_$33/ of porous PZT ceramics was almost same to that of single phase PZT ceramics. The thickness mode coupling factor k$\_$t/ was ranged over 0.53∼0.59 comparable with the single phase PZT ceramics(k$\_$t/=0.7).

Crack propagation behavior of in-situ structural gradient Ni/Ni-aluminide//Ti/Ti-aluminide laminate materials (Ni/Ni-aluminide//Ti/Ti-aluminide 구조경사형 층상재료의 균열 전파 거동)

  • Chung, D.S.;Kim, J.K.;Cho, H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.269-275
    • /
    • 2005
  • Ni/Ni-aluminide/Ti/Ti-aluminide laminate composite, considered as a functionally gradient material, was manufactured by thin foil hot press technique. Thick intermetallic layers of NiAl and $TiAl_3$ were formed by a self-propagating high-temperature synthesis (SHS) reaction, and thin continuous taters of $Ni_3Al$ and TiAl were formed by a solid-state diffusion. Fracture resistance with loading along the crack arrester direction is higher than crack divider direction due to the interruption of crack growth in metal layers. The $Ni_3Al$ and NiAl intermetallic layer showed cleavage and intergranular fracture behavior, respectively, while the fracture mode of $TiAl_3$ layer was found to be an intragranular cleavage. The debonding between metal and intermetallic layer and the pores were observed in the Ni/Ni-aluminide layers, resulting in the lower fracture resistance. With the results of acoustic emission (AE) source characterization the real time of failure and the effect of AE to crack growth could be monitored.