• Title/Summary/Keyword: Acoustic Microscope

Search Result 110, Processing Time 0.028 seconds

Evaluation of Fatigue Damage of Metal Matrix Composite by LFB Acoustic Microscopy (Line-Focus-Beam 초음파 현미경을 이용한 금속복합재료의 피로손상에 관한 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.2
    • /
    • pp.40-47
    • /
    • 1993
  • Composites composed of a precipitation harden 2124 alloy matrix reinforced by SiC whiskers, which are fabricated by powder metallugy, are suscepttible to fatigue damage due to the pile-up of moving dislocation and the microcrack initiation along SiC-Al interfaces, especially at the external surfaces of a body. The initial process, such as pile-up of dislocation or microcrack, that corresponds to the stage I during fatigue failure process are too small to be detected and characterized by conventional ultrasonic technique. This paper describes the applicability of an acoustic microscope with Line-Focus-Beam(LFB) lens of 225MHz to evaluate fatigue damage of SiC whiskers reinforced Al alloy. The specimens which were 6.6mm thick, 13mm wide, and 105mm long in the gage section were fatigued in tension-tension under load control. The velocity of leaky surface and leaky pseudosurface acoustic waves are obtained by FFT analysis technique from V(z) curve which is a record of output of piezoelectric transducer. These results are discussed with the change of number of fatigue cycles. The result obtained by acoustic microscope is compared with that by ultrasonic technique generated at 5MHz with conventional surface wave transducers.

  • PDF

Simulation of V(z) curve at the Acoustic Microscope (초음파현미경에서 V(z)곡선의 시뮬레이션)

  • 박익근;임재생;윤종학;노승남;서성원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.426-430
    • /
    • 2003
  • 본 연구에서는 초음파현미경의 기하학적 원리와 초음파현미경의 특징중 하나인 V(z)곡선의 간섭파형을 시뮬레이션 하였고, 실제 초음파현미경의 V(z)곡선법을 이용하여 미소영역에서의 누설탄성표면파 음속을 측정하였다. 초음파현미경을 이용한 V(z)곡선법의 음속측정결과가 시뮬레이션 음속값과 큰차이를 보이지 않으므로 미소영역에 초음파현미경의 V(z)곡선법을 적용하여 초음파의 음속측정이 가능함을 확인하였다. 이는 향후 초음파현미경을 이용하여 미세한 재료의 물성평가에 적용할 수 있을 것으로 기대된다.

  • PDF

Characteristic of Ductile Regime AFM Machining Using Acoustic Emission (AE를 이용한 AFM 연성 영역 가공 특성 연구)

  • Ahn Byoung-Woon;Lee Kwang-Ho;Lee Seoung-Hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.15-21
    • /
    • 2006
  • Recently, atomic force microscope(AFM) with suitable tips is being used for nano fabrication/nanometric machining purposes. In this paper, acoustic emission(AE) was introduced to monitor the nanometric machining of brittle materials(silicon) using AFM. In the experiments, AE responses were sampled, as the tip load was linearly increased(ramped load), to investigate the machining characteristics during a continuous movement. By analyzing the experimental results, it can be concluded that measured AE energy is sensitive to changes in the mechanism of material removal including the ductile-brittle transition during the nanometric machining. The critical depth of cut value for the transition is evaluated and discussed.

Reliability Evaluation of Semiconductor using Ultrasound (초음파를 이용한 반도체의 신뢰성 평가)

  • Jang, Hyo-Seong;Ha, Job;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.598-606
    • /
    • 2001
  • Recently, semiconductor packages trend to be thinner, which makes difficult to detect defects therein. A preconditioning test is generally performed to evaluate the reliability of semiconductor packages. The test procedure includes two scanning acoustic microscope (SAM) tests at the beginning and end of the entire test, in order to help detect physical defects such as delaminations and package cracks. In particular, of primary concern are package cracks and delaminations caused by moisture absorbed under ambient conditions. This paper discusses the failure mechanism associated with the moisture absorbed and encapsulated in semiconductors, and the use SAM to detect failures such as tracks and delaminations grown during the preconditioning test.

  • PDF

The Measurement of the Depth of Crack using Images of SLAM (SLAM 영상을 이용한 크랙 깊이 측정)

  • Hwang, Ki-Hwan;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.51-56
    • /
    • 1997
  • In this paper, we studied the configuration and depth measurement method of the crack in the interior of solid with scanning laser acoustic microscope. Precision measurement method of crack depth is required in SLAM because that system reconstructs the shadow image to the transmission coefficient. We proposed this method that used geometrical structure to the shadow area of SLAM images obtained from oblique incidence and the mode conversion of ultrasound in specimen and then experimented it. For this experiment, we fabricated various specimens which had the vertical line-crack with different depth and made the wedge as 20$^{\circ}$ for oblique incidence. Experimental results showed that the shadow area of SLAM images were proportional to the depth of crack. Measured depth error to the crack was less than 6% compared with practical crack depth.

  • PDF

Interfacial Evaluation of Flax and Hemp Fibers/Polypropylene Composites Using Micromechanical Test and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Flax 와 Hemp섬유 강화된 Polypropylene 복합재료의 계면 물성 평가)

  • Son, Tran-Quang;Hwang, Byung-Sun;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Interfacial evaluation of various combinations of both Flax and Hemp fibers/polypropylene were performed by using micromechanical test and nondestructive acoustic emission (AE). It can be because interfacial adhesion between the natural fiber surface and matrix plays an important role in controlling the overall mechanical properties of polymer composite materials by transferring the stress from the matrix to the fiber. It is necessary to characterize the interphase and the level of adhesion to understand the performance of the composites properly. Microfailure mechanism of single Flax fiber bundles were investigated using the combination of single fiber tensile test and nondestructive acoustic emission. Microfailure modes of the different natural fiber/polypropylene systems were observed using optical microscope and determined indirectly by AE and their FFT analysis.

  • PDF

Effect of Sn Contents on the Microstructure and Acoustic Characteristics of Cu-Sn Alloys (Cu-Sn합금의 미세조직 및 음향특성에 미치는 Sn함량의 영향)

  • Hong, Young-Keun;Lee, Jeong-Keun;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.21 no.2
    • /
    • pp.135-140
    • /
    • 2001
  • Microstructure of the bell made with Cu-Sn alloys was examined by optical and scanning electron microscope and that analyzed quantitatively with image analyzer. Also acoustic characteristics of the bells were measured in detail by using FFT type power spectrum analyzer. ${\alpha}-single$ phases of large grains only were observed in Cu-5%Sn alloy. However mixed structure of primary ${\alpha}-phase$ and eutectoid of ${\alpha}+{\delta}%_o$ was existed in the Cu-Sn alloys with more than 9%Sn. Also the area fraction of eutectoid phases gradually increased with an increased Sn content. From the result of acoustic test, it was found that frequency and tonal intensity decreased with the increased Sn content from 5%Sn to 11%Sn, and those were rather increased with further increase of that. The lowest frequency and tonal intensity were showed in Cu-11%Sn, and porosity decreased considerably frequency and tonal intensity of the bells.

  • PDF

Determination of the Effective Elastic Constants of a Superlattice Film by Measuring SAW Velocities (표면탄성파 전파속도 측정에 의한 초격자 다층박막의 유효탄성계수 결정)

  • 김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.41-45
    • /
    • 2000
  • The effective elastic constants of a single-crystal superlattice film have been determined by two methods based on the velocities of surface acoustic waves (SAW). One method uses formulas to calculate the effective elastic constants of a superlattice from the known elastic constants of the constituent layers. The calculated effective elastic constants are tested by comparing the corresponding SAW velocities calculated for thin-film/substrate systems with the corresponding SAW velocities measured by line-focus acoustic microscopy (LFAM). The other method determines the effective elastic constants of the superlattices by inverting the SAW velocity dispersion data measured by LFAM. The results of both methods applied to a TiN/NbN superlattice film are in good agreement.

  • PDF

Acoustic Emission during Crack Propagation Process of Rubber-Modified Epoxy Resin (고무변성 에폭시 수지의 균열진전과정과 음향방출 특성)

  • 이덕보;김현수;최낙삼;남기우;문창권
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.44-50
    • /
    • 2003
  • The damage zone around a crack tip occurring before the fracture is a significant domain. which affects the toughening mechanism of materials. In this study. the growth process of damage zone in the vicinity of crack tip for rubber-modified epoxy resin is investigated using an acoustic emission(AE) analysis. The weight fractions of rubber(CTBN 1300$\times$B) in rubber-modified epoxy resin are 5 wt% and 15 wt%. The fracture toughness($K_{IC}$) and the fracture energy($G_{IC}$) were measured using 3 point bending single-edge notched specimens. The damage zone and rubber particles distributed around the crack tip were observed by a polarized optical microscope and an atomic force microscope(AFM). The damage zone around crack tip of rubber-modified epoxy resin was formed at 13 % loading and developed until 57 % loading of the fracture load. The crack initiated at 57 % loading grew repeatedly in the stick-slip propagation behavior. Based on time-frequency analysis, it was confirmed that AE signals with frequency bands of 0.15~0.20 MHz and 0.20~0.30 MHz were generated from cavitation and stable/unstable cracking inside the damage zone.

AE Characteristics for Fracture Mechanism of Al 7075/CFRP Hybrid Composite (Al 7075/CFRP Hybrid 복합재료의 파손특성에 대한 AE 특성 연구)

  • 이진경;이준현;송상헌;윤한기
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.268-271
    • /
    • 2001
  • When compared to other composite materials such as FRP and MMC, hybrid composite material is more attractive one due to the high specific strength and the resistance to fatigue. However, the fracture mechanism of hybrid composite material is extremely complicated because of the bonding structure of metals and FRP. Recently, nondestructive technique has been used to evaluate the fracture mechanism of these composite materials. In this study, AE technique has been used to clarify the fracture mechanism and the degree of damage for Al 7075/CFRP hybrid composite material. It was found that AE event, energy and amplitude among AE parameters were effective to evaluate fracture process of Al 7075/CFRP composite material. In addition, the relationship between the AE signal and the characteristics of failure surface using optical microscope was discussed.

  • PDF