• 제목/요약/키워드: Acoustic Instability

검색결과 247건 처리시간 0.028초

이산형 열-음향 모델을 이용한 부하 변동시 가스터빈 연소 불안정 특성 (Combustion Instability of Gas Turbine with Segmented Dynamic Thermo-Acoustic Model under Load Follow-Up)

  • 정지웅;한재영;정진희;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제29권5호
    • /
    • pp.538-548
    • /
    • 2018
  • The thermo-acoustic instability in the combustion process of a gas turbine is caused by the interaction of the heat release mechanism and the pressure perturbation. These acoustic vibrations cause fatigue failure of the combustor and decrease the combustion efficiency. This study is to develop a segmented dynamic thermo-acoustic model to understand combustion instability of gas turbine. Therefore, this study required a dynamic analysis rather than static analysis, and developed a segmented model that can analyze the performance of the system over time using the Matlab/Simulink. The developed model can confirm the thermo-acoustic combustion instability and exhaust gas concentration in the combustion chamber according to the equivalent ratio change, and confirm the thermo-acoustic combustion instability for the inlet temperature and the load changes. As a result, segmented dynamic thermo-acoustic model has been developed to analyze combustion instability under the operating condition.

Numerical Analysis of Acoustic Characteristics in Gas Turbine Combustor with Spatial Non-homogeneity

  • Sohn, Chae-Hoon;Cho, Han-Chang
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1461-1469
    • /
    • 2004
  • Acoustic characteristics in an industrial gas-turbine combustor are numerically investigated by a linear acoustic analysis. Spatially non-homogeneous temperature field in the combustor is considered in the numerical calculation and the characteristics are analyzed in view of acoustic instability. Acoustic analyses are conducted in the combustors without and with acoustic resonator, which is one of the acoustic-damping devices or combustion stabilization devices. It has been reported that severe pressure fluctuation frequently occurs in the adopted combustor, and the measured signal of pressure oscillation is compared with the acoustic-pressure response from the numerical calculation. The numerical results are in good agreement with the measurement data. In this regard. the phenomenon of pressure fluctuation in the combustor could be caused by acoustic instability. From the numerical results for the combustor with present acoustic resonators installed, the acoustic effects of the resonators are analyzed in the viewpoints of both the frequency tuning and the damping capacity. It is found that the resonators with present specifications are not optimized and thus, the improved specification or design is required.

불균질한 온도장을 고려한 가스터빈 연소기의 음향장 해석 (A Numerical Analysis of Acoustic Characteristics in Gas Turbine Combustor with Spatial Non-homogeneity)

  • 손채훈;조한창
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1292-1297
    • /
    • 2004
  • Acoustic characteristics in an industrial gas-turbine combustor are numerically investigated by adopting linear acoustic analysis. Spatially non-homogeneous temperature field in the combustor is considered in the numerical calculation and the characteristics are analyzed in view of acoustic instability. Acoustic analysis are conducted in the combustors without and with acoustic resonator, which is one of combustion stabilization devices. It has been reported that severe pressure fluctuation frequently occurs in the adopted combustor, and the measured signal of pressure oscillation is compared with the acoustic-pressure response from the numerical calculation. The numerical results are in a good agreement with the measurement data. In this regard, the phenomenon of pressure fluctuation in the combustor could be caused by acoustic instability. The acoustic effects of the resonators are analyzed in the viewpoints of both the frequency tuning and the damping capacity.

  • PDF

A CFD Study on Thermo-Acoustic Instability of Methane/Air Flames in Gas Turbine Combustor

  • Sohn, Chae-Hoon;Cho, Han-Chang
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1811-1820
    • /
    • 2005
  • Thermo-acoustic instability of methane/ air flames in an industrial gas-turbine combustor is numerically investigated adopting CFD analysis. The combustor has 37 EV burners through which methane and air are mixed and then injected into the chamber. First, steady fuel! air mixing and flow characteristics established by the burner are investigated by numerical analysis with single burner. And then, based on information on the flow data, the burners are modeled numerically via equivalent swirlers, which facilitates the numerical analysis with the whole combustion system including the chamber and numerous burners. Finally, reactive flow fields within the chamber are investigated numerically by unsteady analysis and thereby, spontaneous instability is simulated. Based on the numerical results, scaling analysis is conducted to find out the instability mechanism in the combustor and the passive control method to suppress the instability is proposed and verified numerically.

외부 음향여기가 원주 후류 유동에 미치는 효과에 관한 연구 (Effect of External Acoustic Excitation on Wake behind a Circular Cylinder)

  • 최재호;이상준
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.603-609
    • /
    • 1999
  • The effect of an external acoustic excitation on the wake structure behind a circular cylinder was experimentally investigated. The sound wave was excited in the frequency range of the shear layer instability and two sound pressure levels of 114 and 120dB were used in this study. As a result, the acoustic excitation modified the wake structure by increasing the velocity fluctuation energy without changing the vortex shedding frequency. The acoustic excitation enhanced the vortex shedding process and promoted the shear layer instability. Consequently, the acoustic excitation reduced the length of the vortex formation region and decreased the base pressure. In addition, the vortex strength of vortices was increased and the width of the wake was spread out due to the acoustic excitation. When the excitation frequency was identical to the shear layer instability frequency, the effect of the external flow control on the cylinder wake was maximized. In addition, with increasing the sound pressure level, the effect of the external acoustic excitation on the wake structure increased.

덤프 연소기에서의 연소불안정과 능동제어에 대한 연구 (Combustion Instability and Active Control in a Dump Combustor)

  • 안규복;;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.445-449
    • /
    • 2005
  • 혼합 acoustic-convective 모드 연소불안정과 스피커를 이용한 능동제어의 가능성에 대한 연구를 수행 하였다. 유입속도, 연소실 길이, 당량비를 변화시켜 가면서 동압과 화염구조를 동시 측정하였다. 유입속도와 연소실 길이는 덤프 연소기에서의 와류 생존시간에 영향을 주기 때문에, 연소길 길이가 길어질수록 그리고 유입속도가 작아질수록 연소불안정의 주파수는 작아지고, 동압에서 얻어진 최대 전력스펙트럼밀도 또한 전반적으로 작아지는 경향을 보였다. 당량비에 따라 불안정의 강도와 주파수 특성도 변했는데, 당량비의 증가에 따라 불안정 주파수와 연소불안정 강도는 증가하는 경향을 나타내었다. 폐루프 방식의 제어를 통하여 스피커를 이용한 능동제어는 이러한 혼합 acoustic-convective 모드 연소불안정으로 발생하는 와류의 발전을 감소시킬 수 있음을 확인하였다.

  • PDF

액체 로켓 엔진의 음향 불안정 예측에 관한 이론적 연구 (Theoretical Study on Acoustic Instability in Liquid Rocket Engine)

  • 손채훈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.92-100
    • /
    • 2000
  • One method to analyse acoustic modes is proposed to predict the characteristics of acoustic instability in liquid rocket engine. It is based on the similarity between transverse acoustic modes and adopts two-dimensional axisymmetric geometry. Using this method, the first tangential mode in the prototype combustor can be analysed through the analysis of the first radial mode in the model combustor with doubled chamber diameter. Sample numerical calculation is demonstrated applying this method to sample rocket engine and thereby acoustic instabilities of the engine are investigated. The present results show a good agreement with the previous findings. The numerical analysis based on the proposed method is cost-effective and serves as the first approximation to the true solution.

  • PDF

튜브 내 하향 전파하는 예혼합 화염의 이차 열음향 불안정성 천이에 관한 실험적 연구 (Experimental Study of Transition to Secondary Acoustic Instability at Downward-Propagating Premixed Flame in a Tube)

  • 박주원;김대해;박대근;윤성환
    • 해양환경안전학회지
    • /
    • 제26권7호
    • /
    • pp.915-921
    • /
    • 2020
  • 연소실 내 공조현상으로 인해 발생되는 열음향 불안정성은 안정적인 연소시스템을 구현하기 위해 해결해야 하는 고질적인 문제로 제기되어 왔다. 열음향 불안정성은 크게 1차 2차 열음향 불안정성으로 나뉘며, 본 연구에서는 열음향 불안정성 중 2차 열음향 불안정성의 천이에 관해 열손실이 미치는 영향에 대한 실험적 연구를 진행하였다. 2차 열음향 불안정성을 발생시키기 위해 한쪽 끝이 열린 1/4 파장 공명기를 채택하여 수직으로 설치하였고, 공명기 내부에는 예혼합 가스를 주입하였다. 또한 공명기 상단으로 발생하는 열손실 효과를 비교하기 위해 추가적으로 외부 동축류 관을 설치하였다. 연료 농후조건의 예혼합 가스만을 채택하여 주입하였기 때문에 동축관에 주입되는 기체에 따라 공명기 상부에 추가적인 확산화염이 형성될 수 있다. 그 결과 확산화염이 발생되었을 경우 공명기 상단으로의 열손실이 감소하며 2차 열음향 불안정성이 발현되었으며, 확산화염이 억제되어 공명기 상단으로의 열손실이 증가하였을 경우 2차 열음향 불안정성의 발현이 억제되는 결과를 도출하였다.

음향공명기가 장착된 가스터빈 연소실의 음향장 해석 (Numerical Analysis of Acoustic Behavior in Gas Turbine Combustor with Acoustic Resonator)

  • 박이선;손채훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1110-1115
    • /
    • 2004
  • Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes.

  • PDF

음향공명기가 장착된 가스터빈 연소실의 음향장 해석 (A Numerical Study on Acoustic Behavior in Gas Turbine Combustor with Acoustic Resonator)

  • 박이선;손채훈
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.95-102
    • /
    • 2005
  • Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed. mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes.