• Title/Summary/Keyword: Acoustic Fluid

Search Result 303, Processing Time 0.03 seconds

Numerical investigations on winglet effects on aerodynamic and aeroacoustic performance of a civil aircraft wing

  • Vaezi, Erfan;Fijani, Mohammad Javad Hamedi
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.303-330
    • /
    • 2021
  • The paper discusses the effect of the winglets on the aerodynamic and aeroacoustic performance of Boeing 737-800 aircraft by numerical approach. For this purpose, computational fluid dynamics and fluent commercial software are used to solve the compressible flow governing equations. The RANS method and the K-ω SST turbulence model are selected to simulate the subsonic flow around the wing with acceptable accuracy and low computational cost. The main variables of steady flow around the simple and blended wing in constant atmospheric conditions are computed by numerical solution of governing equations. The solution of the acoustic field has also been accomplished by the broad-band acoustic source model. The results reveal that adding a blended winglet increases the pressure difference near the wingtip,which increases the lift force. Also, the blended winglet reduces the power and magnitude of vorticities around the wingtip, which reduces the wing's drag force. The effects of winglets on aerodynamic forces lead to a 3.8% increase in flight range and a 3.6% increase in the maximum payload of the aircraft. Also, the acoustic power level variables on the surfaces and fields around the wing have been investigated integrally and locally.

A study on the reduction of the flow-induced noise in turbo-charger diesel engines (터보 차져 디젤 엔진에서의 기류음 감소를 위한 연구)

  • Kang, Woong;Kim, Hyung-Jin;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2913-2917
    • /
    • 2007
  • Turbocharger has been widely used in many passenger cars in application with diesel engines because of high power and fuel efficiency. However, flow-induced noise (whoosh or hissing noise) which is generated within the compressor during its operation at marginal surge line can deteriorate noise characteristics. Hissing noise excitation was associated with the generation of turbulence within the turbocharger compressor and radiated through the transmission path in turbocharger system. In this study, a sharp-edged reactive-type muffler was devised and installed in the transmission path to reduce the hissing noise. Acoustic and fluid dynamic characteristics for the muffler were investigated which is related to the unsteadiness of turbulence and pressure in turbocharger system. A transfer matrix method was used to analyze the transmission loss of the muffler. Simple expansion muffler with extended tube of the reactive type is proposed for the reduction of high frequency component noise. Turbulence computation was carried out by a standard ${\kappa}-{\varepsilon}$ model. An optimal design condition of the muffler was obtained by extensive acoustic and fluid dynamic analysis on the engine dynamometer with anechoic chamber. A significant reduction of the hissing noise was achieved at the optimal design of the muffler as compared with the conventional turbocharger system.

  • PDF

Leakage Monitoring of Control Valves for Nuclear Power Plants Using Multi-measuring (Multi-measuring기법을 이용한 원전 제어밸브의 누설진단)

  • Kim, Sung-Young;Kim, Young-Bum;Kim, Bong-Ho;Lee, Sang-Guk
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3458-3463
    • /
    • 2007
  • Leakage would happen because of the damage of high temperature and high-pressure valve in nuclear power plant. condition based prevention maintenance is essential by using the suitable method based on local condition. Energy loss prevention can prevent from an accurate test, Local actually and ability. The methods of test for high energy fluid leakage at present are analysis of ${\Delta}$T, AE(Acoustic Emission) analysis, and thermal image. The result for test of AC (Main steam) system in YNG 2 Unit reveals that the AE occurred clearly in leakage situation, but thermal image didn't occur. It is identified that leakage is occurred when the orifice located front and back of valve operates. It shows that making a impatient judgment by using the single method if it is leakage is containing uncertainty. So I think that using the Multi-Measuring method is more sound judgment than Single-Measuring method.

  • PDF

Interactions of Spherical Acoustic Shock Waves with a Spherical Elastic Shell near a Free-Surface (자유표면 근처에서의 구형 셸과 충격파의 비정상 유체-구조물 상호작용 해석)

  • Lee, Min-Hyung;Lee, Beom-Heon;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1143-1148
    • /
    • 2002
  • This paper analyses the transient response of a spherical elastic shell located near fee surface and impinged by spherical step-exponential acoustic shock waves. The problem is solved through extension of a method (Huang, 1969) previously formulated for the excitation in an infinite domain, which employs the classical separation of variables, series solutions, and Laplace transform technique The effect of the free surface reflection is taken into account using the image source method. The reflection of the incident wave has been treated by the same image formulation. If the reflection of the pressure field scattered and radiated by the shell is considered, the problem becomes that of multiple scattering by two spheres. However, this is in general negligible considering errors inherent from other sources and that the scattered and radiated pressure waves emanating from the shell are small. Thus, the problem is reduced to that of a structure immersed in an infinite fluid and impinged upon the origin and the image incident.

Acoustical Performance Analysis of the Simple Expansion Chamber by using CFD (CFD를 이용한 단순확장관의 음향특성 해석)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung;Jeong, Weui-Bong;Kim, Hyung-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1354-1359
    • /
    • 2007
  • This paper discusses the acoustic performance of simple expansion chamber using computational fluid dynamics(CFD). The CFD model consists of an axisymmetric grid with a single period sinusoid of acceptable amplitude and duration imposed at the inlet boundary condition. The time history of the static pressure is recorded at two points, one in the inlet pipe and one point in outlet pipe. The time history of the static pressure is converted to the frequency domain using Fourier Transform and the transmission loss (TL) of the muffler is obtained from the ratio of the static pressure at the inlet and outlet pipe. The transmission loss of CFD result is compared with that of the computational acoustic analysis using the boundary element method (BEM). There are some differences in two results due to the pressure drop according to the inlet and outlet pipe length. Therefore, the effects of the pressure drop to the transmission loss have to be considered.

  • PDF

Evaluation of Hydraulic Behavior within Parallel arranged Upflow Sedimentation Basin Using CFD Simulation (I) - The influence of feed water inequity- (CFD를 이용한 병열 배열형 상향류식 침전지 수리해석에 관한 연구(I) - 침전지 내 유입유량 불균등 영향 조사 -)

  • Park, No-Suk;Kim, Seong-Su;Choi, Jong-Woong;Sung, Youl-Boong;Kang, Moon-Sun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.469-477
    • /
    • 2013
  • In order to investigate the influence of feed water inequity on the settling performance for parallel arranged upflow sedimentation basin in domestic G_WTP(Water Treatment Plant), CFD(Computational Fluid Dynamics) simulation were employed and ADV(Acoustic Doppler Velocimeter) measurements were carried out. From the results of both CFD simulations and ADV measurements, the differences among inlet flow rates to each inlet structure make turbulent energy dissipation uneven overall sedimentation basin. Especially local velocities in the near of both side wall were observed over the design overflow rate(74.4 mm/min). Also, it was confirmed that this inequity of inlet flow would exert an serious influence on the turbidity of settled water which is out from 8 troughs. Even though experimental velocities in full scale basin about 20% higher than the simulated, the results of ADV measurement were in good accordance with those of CFD simulations.

Pressure-Oscillation Damping Characteristics of an Orifice in a Fluid Feeding Line with Mean Flow (평균유동이 있는 유체 공급배관내 오리피스의 압력섭동 감쇠 특성)

  • Lee, Tae-Young;Kim, Chul-Jin;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.359-362
    • /
    • 2009
  • Damping characteristics of pressure oscillation induced by an orifice in fluid feeding line for are investigated numerically and experimentally. Assuming small pressure oscillation, acoustic damping effect of orifice is confirmed experimentally, and with the mean flow, damping characteristics of an orifice are investigated numerically. When an orifice is installed at the node of pressure oscillation corresponding to the anti-node of velocity oscillation, suppression of pressure oscillation is maximized and with the mean flow, the resonant frequency is decreased. And, it is found that the optimal position of an orifice for damping shouled be changed.

  • PDF

Reduction of Flow-Induced Noise in an Expansion Muffler with Lids (삽입관이 있는 확장형 소음기에서의 기류음 감소)

  • Kang, Woong;Kim, Hyung-Jin;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.79-84
    • /
    • 2009
  • Turbocharger has been widely used in many passenger cars in application with diesel engines because of high power and fuel efficiency. However, flow-induced noise (whoosh or hissing noise) which is generated within a compressor during its operation at marginal surge line can deteriorate noise characteristics. Hissing noise excitation is associated with the generation of turbulence within the turbocharger compressor and radiated through the transmission path in a turbocharger system. In this study, a expansion muffler with lids is devised and installed in the transmission path to reduce the hissing noise. Acoustic and fluid dynamic characteristics for the muffler are investigated which are related to the unsteadiness of turbulence and pressure in the turbocharger system. A transfer matrix method is used to analyze the transmission loss of the muffler. A simple expansion muffler with lids is proposed for the reduction of high frequency component noise. Turbulence simulation is carried out by a standard k - ${\varepsilon}$ model. An optimal design condition of the muffler is obtained by extensive acoustic and fluid dynamic analysis on the engine dynamometer with anechoic chamber. A significant reduction of the hissing noise is achieved at the optimal design of the muffler as compared with the conventional muffler.

Electrical Transmission Line Modelling of the Cochlear Basilar Membrane (다팽이관 기저막의 전기 전달선 모델링)

  • Jarng, Soon-Suck
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.125-136
    • /
    • 1993
  • The study of Cochlear biomechanics is to clearly define three biomechanical principles of the Cochlea : Activity, Nonlinearity and Feedback. In this article, the Cochlea is linearly and actively modelled in one dimensional time domain. The sharp tunning of the Basilar Membrane displacement is shown when the amplifying activity of hair cells is added to the model. The amplified energy of the travelling displacement wave is emitted throughout the Cochlear fluid, so that the model becomes unstable. A new technique is introduced to reduce strong echos fro the Helicotrema. It makes the model less unstable. Both pure and click tones are used as input stimuli onto the ear durm. When the model is normal, the click response of the model shows that the backward emission of the amplified fluid pressure has mainly the echos from the Helicotrema. However, when the linear and active model is assumed to be abnormal, that is, some of hair cells are damaged not to produce the active process, the effect of the hair cell damage is resulted in the Oto-acoustic emission. The frequency response of the abnormally emitted sound pressure shows that the Oto-acoustic emission has the information about the characteristic frequency of the damaged hair cell. The main aim of this paper is to demonstrate the active biomechanics of the Chchlea in the time domain.

  • PDF

A method for removal of reflection artifact in computational fluid dynamic simulation of supersonic jet noise (초음속 제트소음의 전산유체 모사 시 반사파 아티팩트 제거 기법)

  • Park, Taeyoung;Joo, Hyun-Shik;Jang, Inman;Kang, Seung-Hoon;Ohm, Won-Suk;Shin, Sang-Joon;Park, Jeongwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.364-370
    • /
    • 2020
  • Rocket noise generated from the exhaust plume produces the enormous acoustic loading, which adversely affects the integrity of the electronic components and payload (satellite) at liftoff. The prediction of rocket noise consists of two steps: the supersonic jet exhaust is simulated by a method of the Computational Fluid Dynamics (CFD), and an acoustic transport method, such as the Helmholtz-Kirchhoff integral, is applied to predict the noise field. One of the difficulties in the CFD step is to remove the boundary reflection artifacts from the finite computation boundary. In general, artificial damping, known as a sponge layer, is added nearby the boundary to attenuate these reflected waves but this layer demands a large computational area and an optimization procedure of related parameters. In this paper, a cost-efficient way to separate the reflected waves based on the two microphone method is firstly introduced and applied to the computation result of a laboratory-scale supersonic jet noise without sponge layers.