• Title/Summary/Keyword: Acoustic Contrast

Search Result 142, Processing Time 0.024 seconds

Korea Offshore Seismic Data Processing for Gas Detection (천연 가스 탐지를 위한 국내 대륙붕 탄성파자료 처리)

  • Jang, Seong-Hyung;Sunwoo, Don;Yang, Dong-Woo;Suh, Sang-Young;Chung, Bu-Heung
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.115-123
    • /
    • 2001
  • The bright spot is an indicator for natural gas on seismic stack sections, but it is also shown on layers where the acoustic impedance contrast is large. In order to distinguish sharply between gas and impedance contrast we need additional detailed data processing such as velocity analysis, AVO analysis and seismic complex analysis including measures of seismic amplitude, frequency, and phase. In this study, we performed detailed velocity analysis, complex analysis and DHI (Direct Hydrocarbon Indicator) analysis which is the result of amplitude variation according to the incident angles. The seismic complex analysis gives us the geological information which depends on geophysical properties at the interest layer. For the complex analysis, we computed several seismic attributes such as the instantaneous amplitude, the first and the second derivatives of the instantaneous amplitude, the instantaneous phase, the instantaneous frequency and weighted average instantaneous frequency. Then we applied these analysis techniques to a seismic data of Korea offshore which had been logged. From the result of this data analysis, it could be said that high possibility area for gas layer detection has amplitude anomalies in the instantaneous amplitude, the instantaneous frequency and the DHI section resulting from the AVO analysis. If there are not any other anomalies in detailed data processing, it will have low possibility for gas layer detection.

  • PDF

The Effects of Habituation and Sensitization on Psychophysiological Differentiation of Responses to Auditory Stimulation with Automobile Horns

  • Estate M. Sokhadze;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.3 no.2
    • /
    • pp.17-28
    • /
    • 2000
  • Psychoacoustic characteristics of automobile horns play significant role in resulting subjective evaluation and psychphysiological reactions. However, comparison and differentiation of physiological responses to commercially available horns is a complicated task due to the small contrast in technical features of horns and the influence of such processes as habituation on physiological outcome with the increased number of auditory stimulation trials. In a study on 10 college students, there was performed comparative analysis of reactivity of physiological responses mediated by central and autonomic nervous systems in order to identify the role of habituation on decrement of psychophysiological responsivity and assess the ability to differentiate subjectively most and least preferred, as well as most and least appropriate horns according to physiological manifestations. The EEG and autonomic responses to 7 automobile horns were analyzed during 3 blocks of trials, with varying order of stimuli and changed acoustic parameters of horns in each block. Thus, responses were analyzed for totally 21 trials of auditory stimulation. It was shown that electrodermal and cardiovascular responses have different reactivity patterns to repeated stimulation: skin conductance measures habituated, cardiac reactivity showed no signs of habituation, and the vascular response demonstrated sensitization. The temporal EEG exhibited marked habituation of fast beta band power, while alpha-blocking effect did not habituate during the course of experiment. Differentiation of physiological responses of most and least preferred and appropriate horns was possible in our study, however, some cardiovascular reactivity measures differentiated during the entire course of the experiment, while EEG and electrodermal parameters showed significant differences only during first block of trials, and were later affected by the habituation.

  • PDF

Relationship between roar sound and regional groups of Steller sea lion, Eumetopias jubatus (큰바다사자의 명음과 지역적 그룹과의 관계)

  • Park, Tae-Geon;Iida, Kohji;Kim, Wook-Sung;Kim, Sung-Ki;Kim, Seok-Jae;Ryu, Kyong-Jin;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.2
    • /
    • pp.195-202
    • /
    • 2015
  • Hundreds of Steller sea lions, Eumetopias jubatus, migrate from Sakhalin and the northern Kuril Islands to Hokkaido in Japan every winter. During this migration, they may use their roaring sounds to navigate and to maintain their groups. We recorded the roars of wild Steller sea lions that had landed on reefs on the west coast of Hokkaido, and those of captive sea lions, while making video recordings. The fundamental frequency ($F_0$), Formant frequency ($F_1$), pulse repetition rate (PRR), and duration of syllables (T) were analyzed using a sonagraph. $F_0$, $F_1$, and PRR of the roars emitted by captive sea lions increased in the order male, female. By contrast, the $F_1$ of wild males was lower than that of females, while the $F_0$ and PRR of wild males and females did not differ statistically. These results suggest regional differences between the five groups showed that.

Relationship between roar sound characteristics and body size of Steller sea lion

  • Park, Tae-Geon;Iida, Kohji;Mukai, Tohru
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.458-465
    • /
    • 2010
  • Hundreds of Steller sea lions, Eumetopias jubatus, migrate from Sakhalin and the northern Kuril Islands to Hokkaido every winter. During this migration, they may use their roaring sounds to navigate and to maintain their groups. We recorded the roars of wild Steller sea lions that had landed on reefs on the west coast of Hokkaido, and those of captive sea lions, while making video recordings. A total of 300 roars of wild sea lions and 870 roars of captive sea lions were sampled. The fundamental frequency ($F_0$), formant frequency ($F_1$), pulse repetition rate (PRR), and duration of syllables (T) were analyzed using a sonagraph. $F_0$, $F_1$, and PRR of the roars emitted by captive sea lions increased in the order male, female, and juvenile. By contrast, the $F_1$ of wild males was lower than that of females, while the $F_0$ and PRR of wild males and females did not differ statistically. Moreover, the $F_0$ and $F_1$ frequencies for captive sea lions were higher than those of wild sea lions, while PRR in captive sea lions was lower than in wild sea lions. Since there was a linear relationship between body length and the $F_0$ and $F_1$ frequencies in captive sea lions, the body length distribution of wild sea lions could be estimated from the $F_0$ and $F_1$ frequency distribution using a regression equation. These results roughly agree with the body length distribution derived from photographic geometry. As the volume of the oral cavity and the length of the vocal cords are generally proportional to body length, sampled roars can provide useful information about a population, such as the body length distribution and sex ratio.

The impact of language-learning environments on Korean learners' English vowel production

  • Lee, Shinsook;Nam, Hosung;Kang, Jaekoo;Shin, Dong-Jin;Kim, Young Shin
    • Phonetics and Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.69-76
    • /
    • 2017
  • The current study investigated whether Korean learners' English-learning environments, especially target English accent (General American English (GAE) vs. Southern British English (SBE)) and English-language experience affected their production of English vowels. Thirty six EFL learners, 27 ESL-US learners, and 33 ESL-UK learners produced 8 English vowels with a bVt frame (beat, bit, bet, bat, bought, bot, boat, boot). The learners' productions were acoustically analyzed in terms of F1 and F2 frequencies. The overall results revealed that the learners' target accent had an effect on their production of some English vowels. The EFL and ESL-US learners' (especially, female learners') production of bought, bot, boat, and boot, which show characteristic differences between the GAE and SBE accents, was closer to that of the native American English (AE) speakers than the native British English (BE) speakers. In contrast, the ESL-UK learners' production of bought and bot demonstrated the opposite pattern. Thus, the impact of target accent was not demonstrated across the board. The effect of the learners' different English-language experience was also rather limited. This was because the EFL learners' production was not much different from the ESL-US learners' production, in spite of the ESL-US learners' residence in the US for more than 9 years. Furthermore, the Korean learners, irrespective of their different English-language experience, tended to produce bit and bat with lower F1 than the native AE and BE speakers, thus resulting in bit and bat to be produced similarly to beat and bet, respectively. This demonstrates the learners' persistent L1 effects on their English vowel production despite the learners' residence in the English speaking countries or their high English proficiency.

Wave Generation and Its Effect on Lesion Detection in Sonoelastography: Theory and Simulation Study (음향 탄성영상법에서 연조직 내 파동 발생과 병변 검출의 특성: 이론 및 시뮬레이션 연구)

  • 박정만;권성재;정목근
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.282-293
    • /
    • 2005
  • Sonoelastography is an ultrasound-based technique that visualizes the elastic properties of soft tissues by measuring the tissue motion generated by an externally applied vibration. In this paper. the characteristics of wave generation in soft tissues due to an acoustic vibrator are studied. The effects of modal patterns on the detectability of lesions such as tumors in senoelastography are also investigated These are accomplished by analyzing the vibration patterns calculated using theoretical equations and finite element methods in halt space, infinite plate. and finite-sized tissue. A finite-width source generates shear waves with large amplitude Propagating in specific directions. and the generation characteristics depend both on the width and frequency of the vibrator. as well as the distance from it. It is shown in a finite-sized tissue that the lesion detection in displacement images is quit dependent on the modal patterns inside tissue. In contrast it Is also found that the lesion detectability in strain images is less dependent on the modal Patterns and is much better than that in displacement images.

Analysis of Surface Sound Channel by Low Salinity Water and Its Mid-frequency Acoustic Characteristics in the East China Sea and the Gulf of Guinea (동중국해와 기니만에서 저염분수로 인한 표층음파채널과 중주파수 음향 특성 분석)

  • Kim, Hansoo;Kim, Juho;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Salinity affects sound speed in the low salinity environment, in the seas where freshwater from large rivers and flows into the marginal sea area near the Yangtze River and the Niger River. In this paper, SSC (Surface Sound Channel) formed by low salinity water was investigated in the East China Sea and the Gulf of Guinea of rainy season. The data from KODC (Korea Oceanographic Data Center) in the East China Sea and from ARGO (Array for Real-time Geostrophic Oceanography) in the Gulf of Guinea of the tropical area were used for analysis. SSC haline channel was formed 14 times among 32 SSC occurrences when the 90 data from 9 points were analyzed during a decade (2000 ~ 2009) in the East China Sea. In the Gulf of Guinea, haline channel was formed 18 times among 20 SSC occurrences during 3 years (2006 ~ 2009). When the sound speed gradient was analyzed from temperature-salinity gradient diagram, the gradients of both salinity and temperature affect SSC formation in the East China Sea. In contrast, the salinity gradient mostly affects SSC formation due to the least change of temperature in the well-developed mixed layer in the Gulf of Guinea. Their acoustic characteristics show that channel depth is 6.5 m, critical angle is $1.5^{\circ}$ and difference of transmission loss between surface and thermocline is 11.5 dB in the East China Sea, while channel depth is 18 ~ 24 m, critical angle is $4.0{\sim}5.4^{\circ}$ and difference of transmission loss is 21.5 ~ 27.9 dB in the Gulf of Guinea. These results are expected to be used as a basic understanding of the acoustic transmission changes due to low salinity water at the estuaries and the ocean with heavy precipitation.

Drilling Gas Hydrate at Hydrate Ridge, ODP Leg 204

  • Lee Young-Joo;Ryu Byong-Jae;Kim Ji-Hoon;Lee Sang-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.663-666
    • /
    • 2005
  • Gas hydrates are ice-like compounds that form at the low temperature and high pressure conditions common in shallow marine sediments at water depths greater than 300-500 m when concentrations of methane and other hydrocarbon gases exceed saturation. Estimates of the total mass of methane carbon that resides in this reservoir vary widely. While there is general agreement that gas hydrate is a significant component of the global near-surface carbon budget, there is considerable controversy about whether it has the potential to be a major source of fossil fuel in the future and whether periods of global climate change in the past can be attributed to destabilization of this reservoir. Also essentially unknown is the interaction between gas hydrate and the subsurface biosphere. ODP Leg 204 was designed to address these questions by determining the distribution, amount and rate of formation of gas hydrate within an accretionary ridge and adjacent basin and the sources of gas for forming hydrate. Additional objectives included identification of geologic proxies for past gas hydrate occurrence and calibration of remote sensing techniques to quantify the in situ amount of gas hydrate that can be used to improve estimates where no boreholes exist. Leg 204 also provided an opportunity to test several new techniques for sampling, preserving and measuring gas hydrates. During ODP Leg 204, nine sites were drilled and cored on southern Hydrate Ridge, a topographic high in the accretionary complex of the Cascadia subduction zone, located approximately 80km west of Newport, Oregon. Previous studies of southern Hydrate Ridge had documented the presence of seafloor gas vents, outcrops of massive gas hydrate, and a pinnacle' of authigenic carbonate near the summit. Deep-towed sidescan data show an approximately $300\times500m$ area of relatively high acoustic backscatter that indicates the extent of seafloor venting. Elsewhere on southern Hydrate Ridge, the seafloor is covered with low reflectivity sediment, but the presence of a regional bottom-simulating seismic reflection (BSR) suggests that gas hydrate is widespread. The sites that were drilled and cored during ODP Leg 204 can be grouped into three end-member environments basedon the seismic data. Sites 1244 through 1247 characterize the flanks of southern Hydrate Ridge. Sites 1248-1250 characterize the summit in the region of active seafloor venting. Sites 1251 and 1252 characterize the slope basin east of Hydrate Ridge, which is a region of rapid sedimentation, in contrast to the erosional environment of Hydrate Ridge. Site 1252 was located on the flank of a secondary anticline and is the only site where no BSR is observed.

  • PDF

High-Resolution (3.5kHz) Echo Characters of the Northern South Shetland Continental Margin and the South Scotia Sea, Antarctica (남극 남쉐틀랜드 북부 대륙주변부 및 남스코시아해 지역의 고해상(3.5 kHz)음향 특성)

  • Lee, Sang-Hoon;Jin, Young-Keun;Kim, Kyu-Jung;Nam, Sang-Heon;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.557-567
    • /
    • 2003
  • High-resolution (3.5 kHz) subbottom profiles were analyzed in order to reveal sedimentation pattern of late Quaternary in the northern South Shetland continental margin and the South Scotia Sea, Antarctica. On the basis of clarity, continuity and geometry of surface and subbottom echoes together with seafloor topography, high-resolution echo characters are classified into eight echo types which represent rock basements (echo type III-1), coarse-grained subglacial till or moraine (echo type I-1), slides/slumps (echo type IV), debris-flow deposits (echo types II-3 and III-2), and bottom-current deposits (echo types I-2, II-1 and II-2). Subglacial till or moraine (echo type I-1) is mostly present in the lower continental shelf and upper continental slope of the northern South Shetland continental margin, which changes downslope to slides/slumps (echo type IV) and debris-flow deposits (echo types II-3 and III-2) in the middle to lower continental slope. This distribution suggests that the continental slopes of the northern South Shetland continental margin were mostly affected by downslope gravitational processes. Further downslope, bottom-current sediments (echo type I-2) deposited by the southwestward flowing Antarctic Deep Water (ADW) occur at the South Shetland Trench, reflecting an Interaction between mass flows and bottom currents in the area. In contrast to the northern South Shetland continental margin, the South Scotia Sea is dominated by bottom-current deposits (echo types II-1 and II-2), indicating that the sedimentation was mostly controlled by the westward flowing ADW. Flow intensity of the ADW has increased in the relative topographic highs, forming thin covers of coarse-grained contourites (echo type II-1), whereas it has decreased in the relative topographic lows, depositing thick, fine-grained contourites (echo type II-2). The poor development of wave geometry in the fine-grained bottom-current deposits (echo type II-2) is suggestive of the unsteady nature of the ADW flow.

Seismic Amplitude and Frequency Characteristics of Gas hydrate Bearing Geologic Model (가스 하이드레이트 지층 모델의 탄성파 진폭 및 주파수 특성)

  • Shin, Sung-Ryul;Lee, Sang-Cheol;Park, Keun-Pil;Lee, Ho-Young;Yoo, Dong-Geun;Kim, Young-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.116-126
    • /
    • 2008
  • In gas hydrate survey, seismic amplitude and frequency characteristics play a very important role in determining whether gas hydrate exists. According to the variation of source frequency and scatterer size, we study seismic amplitude characteristics using elastic modeling applied at staggered grids. Generally speaking, scattering occurs in proportion to the square of source frequency and the scatterer volume, which has an effect on seismic amplitude. The higher source frequency is, the more scattering occurs in gas hydrate bearing zone. Therefore, BSR is hardly observed in high frequencies. On the other side, amplitude blanking zone and BSR is clearly observed in lower frequencies although the resolution is poor as a whole. Seismic reflections traveling through free-gas layer below gas hydrate bearing zone decay so severely a high frequency component that a low frequency term is dominant. Amplitude anomaly of BSR result from high acoustic impedance contrast due to free-gas, which is a very crucial factor to estimate gas hydrate bearing zone. Seismic frequency analysis is carried out using wavelet transform method that frequency component could be decomposed with time variation. In application of wavelet transform to the seismic physical experiments data, we can observe that reflections traveling through air layer, which corresponds to the free-gas layer, decay a high frequency component.