• 제목/요약/키워드: Acoustic Contrast

검색결과 144건 처리시간 0.025초

다수의 음원을 사용한 공간의 소리 제어 방법론 (Spatial Manipulation of Sound using Multiple Sources)

  • 최정우;김양한;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.620-628
    • /
    • 2005
  • Spatial control of sound is essential to deliver better sound to the listener's position in space. As it can be experienced in many listening environments, the quality of sound can not be manifested over every position in a hall. This motivates us to control sound in a region we select. The primary focus of the developed method has to do with the brightness and contrast of acoustic image in space. In particular, the acoustic brightness control seeks a way to increase loudness of sound over a chosen area, and the contrast control aims to enhance loudness difference between two neighboring regions. This enables us to make two different kinds of zone - the zone of quiet and the zone of loud sound - at the same time. The other perspective of this study is on the direction of sound. It is shown that we can control the direction of perceived sound source by focusing acoustic energy in wavenumber domain. To begin with, the proposed approaches are formulated for pure-tone case. Then the control methods are extended to a more general case, where the excitation signal has broadband spectrum. In order to control the broadband signal in time domain, an inverse filter design problem is defined and solved in frequency domain. Numerical and experimental results obtained in various conditions certainly validate that the acoustic brightness, acoustic contrast, direction of wave front can be manipulated for some finite region in space and time.

  • PDF

수중음향 모델을 위한 보름달물해파리(Aurelia aurita s.l.)의 체내 음속비 및 밀도비 (Measurements of Sound Speed and Density Contrasts of the Moon Jellyfish (Aurelia aurita s.l.) for Hydroacoustic Model)

  • 강돈혁;이창원;이형빈;김미라
    • Ocean and Polar Research
    • /
    • 제34권1호
    • /
    • pp.85-91
    • /
    • 2012
  • Physical properties such as sound speed contrast (h) and density contrast (g) of the interested target are key parameters to understand acoustic characteristics by using theoretical scattering models. The density and sound speed of moon jellyfish (common jellyfish, Aurelia aurita s.l.) were measured. Sound speed contrast (h) was measured from travel time difference (time-of-flight method) of an acoustic signal in a water tank for APOP studies (Acoustic Properties Of zooplankton). Density contrast (g) was measured by the displacement volume and wet weight (dual-density method). The sound speed remained almost constant as the moon jellyfish increased in bell length. The mean values${\pm}$standard deviation of h and g were $1.0005{\pm}0.0012$ and $0.9808{\pm}0.0195$), respectively. These results will provide important input for use in theoretical scattering models for estimating the acoustic target strength of jellyfish.

Primary Radiation Force to Ultrasound Contrast Agents in Propagating and Standing Acoustic Field

  • Seo, Jong-Bum
    • The Journal of the Acoustical Society of Korea
    • /
    • 제28권1E호
    • /
    • pp.1-8
    • /
    • 2009
  • Primary radiation force on ultrasound contrast agents (UCA) in a propagating and standing acoustic field was explored. A specific ultrasound contrast agent $Albunex^{(R)}$ and $Optison^{(R)}$ were chosen for simulation. The model was developed based on a shelled bubble model proposed by Church. The numerical simulation suggests that bubble translational motion is more significant in therapeutic ultrasound due to higher intensity and long pulse duration. Even a single cycle of a propagating wave of 4 MPa at 1 MHz can cause a bubble translational motion of greater than $1{\mu}m$ which is approximately one tenth of capillary. Hence, UCA characteristics can be significantly changed in therapeutic ultrasound without rapid bubble collapses.

다수의 단극 음원들을 이용한 속이 빈 실린더 형상의 응향 위치 에너지 집적공간 형성방법 (A method of Shaped Sound Focusing Using Multiple Monopole Sources: Hollow Cylinder shape)

  • 박진영;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.537-540
    • /
    • 2005
  • Shaped Sound Focusing is defined as the generation of acoustically bright zone with a certain shape in space using multiple sources. The acoustically bright zone is a spatially focused region with relatively high acoustic potential energy level. In view of the energy transfer, acoustic focusing using multiple sources is essential because acoustic energy is very small to use other type of energy. It can be done by taking optimization techniques which can be acoustic brigtness control and acoustic contrast control. But it has not been frequently concerned about several cases, so the case of hollow cylinder shaped sound focusing is adapted and there wi11 be arguments about available control variables and spatially controllable region in this case.

  • PDF

The Role of Contrast in Prosodically Induced Acoustic Variation

  • Choi, Han-Sook
    • 말소리와 음성과학
    • /
    • 제1권3호
    • /
    • pp.29-37
    • /
    • 2009
  • This paper presents results from speech production experiments on English, Korean, and Hindi that compare variation in the acoustic expression of dissimilar phonological laryngeal contrast in stops conditioned by prosodic prominence. Target stops are analyzed from utterance-initial, -medial, and -final positions, with a variation in contrastive focal accent, from the speech data by six male American English speakers, five male Seoul Korean speakers, and five male Delhi Hindi speakers. The results show that prosodic prominence conditions enhanced distinctiveness between contrastive segments in the three languages. The manner in which prosodic prominence and prosodic phrase structure is marked at the level of segmental variation is, however, found to be language-specific to some extent. In addition, a correlation between the size of the phonological inventory and the corresponding acoustic variation was found but the linear correlation was not strongly supported with the findings in the present study.

  • PDF

음향 대조 및 밝기 제어: 이론적 배경 (Fundamentals of Bright and Dark Zone: Theoretical Backgrounds)

  • 최정우;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.388-393
    • /
    • 2012
  • 본 논문에서는 공간상의 서로 다른 영역에 소리를 집중하거나 파면의 전파 형상을 제어 가능케 하는 음향 밝기 및 대조 제어의 기초 이론을 서로 다른 제한 조건의 관점에서 살펴보았다. 밝기 및 대조 제어는 소형 모바일 기기에서 DTV, 항공기 실내 등 다양한 분야에서 활발히 연구되고 있으며, 향후 홈환경과 같이 음향반사가 심한 공간에서도 사적이고 쾌적한 음향청취 공간을 제공하는데 활용될 수 있다.

  • PDF

다수의 음원을 사용한 공간의 소리 제어 방법론 (Spatial Manipulation of Sound Using Multiple Sources)

  • 최정우;김양한;박영진
    • 한국소음진동공학회논문집
    • /
    • 제15권12호
    • /
    • pp.1378-1388
    • /
    • 2005
  • Spatial control of sound is essential to deliver better sound to the listener's position in space. As it can be experienced in many listening environments. the quality of sound can not be manifested over every Position in a hall. This motivates us to control sound in a region we select. The primary focus of the developed method has to do with the brightness and contrast of acoustic image in space. In particular, the acoustic brightness control seeks a way to increase loudness of sound over a chosen area, and the contrast control aims to enhance loudness difference between two neighboring regions. This enables us to make two different kinds of zone - the zone of quiet and the zone of loud sound - at the same time. The other perspective of this study is on the direction of sound. It is shown that we can control the direction of perceived sound source by focusing acoustic energy in wavenumber domain. To begin with, the proposed approaches are formulated for pure-tone case. Then the control methods are extended to a more general case, where the excitation signal has broadband spectrum. In order to control the broadband signal in time domain, an inverse filter design problem is defined and solved in frequency domain. Numerical and experimental results obtained in various conditions certainly validate that the acoustic brightness, acoustic contrast, direction of wave front can be manipulated for some finite region in space and time.

Acoustic Variation Conditioned by Prosody in English Motherese

  • Choi, Han-Sook
    • 말소리와 음성과학
    • /
    • 제2권1호
    • /
    • pp.41-50
    • /
    • 2010
  • The current study exploresacoustic variation induced by prosodic contexts in different speech styles,with a focus on motherese or child-directed speech (CDS). The patterns of variation in the acoustic expression of voicing contrast in English stops, and the role of prosodic factors in governing such variation are investigated in CDS. Prosody-induced acoustic strengthening reported from adult-directed speech (ADS)is examined in the speech data directed to infants at the one-word stage. The target consonants are collected from Utterance-initial and -medial positions, with or without focal accent. Overall, CDS shows that the prosodic prominence of constituents under focal accent conditions variesin the acoustic correlates of the stop laryngeal contrasts. The initial position is not found with enhanced acoustic values in the current study, which is similar to the finding from ADS (Choi, 2006 Cole et al, 2007). Individualized statistical results, however, indicate that the effect of accent on acoustic measures is not very robust, compared to the effect of accent in ADS. Enhanced distinctiveness under focal accent is observed from the limited subjects' acoustic measures in CDS. The results indicate dissimilar strategies to mark prosodic structures in different speech styles as well as the consistent prosodic effect across speech styles. The stylistic variation is discussed in relation to the listener under linguistic development in CDS.

  • PDF

한국연안에 있는 보름달물해파리의 체내 음속과 밀도 평가 (An estimation of the sound-speed and density of moon jellyfish (Aurelia aurita) in Korean waters)

  • 윤은아;황두진
    • 수산해양기술연구
    • /
    • 제49권4호
    • /
    • pp.483-491
    • /
    • 2013
  • The sound-speed and density contrasts are important factors in estimating the target strength (TS) of moon jellyfish (Aurelia aurita). In this study, the sound-speed and density contrasts were measured using time-of-flight and neutral buoyancy methods, respectively. The sound-speed contrast of A. aurita was from 0.9966 to 1.0031 (mean${\pm}$SD, $0.9999{\pm}0.0017$) and no distinct differences in temperature or pulsation activity and weak were found. The density contrast was from 0.9994 to 1.0004 (mean${\pm}$SD, $1.0000{\pm}0.0002$). The density of A. aurita was substantially different but the density contrast of A. aurita was shown to be similar to that in the sampling location. The results can be used to estimate of TS of A. aurita by acoustic model.

도루묵의 체내 임피던스 및 유영자세각 평가 (Estimation of swimming angle and body impedance of sandfish (Arctoscopus japonicus))

  • 윤은아;황두진;오우석;이형빈;이경훈
    • 수산해양기술연구
    • /
    • 제58권2호
    • /
    • pp.121-129
    • /
    • 2022
  • Density and sound speed contrasts (g and h, respectively), and swimming angle were measured for sandfish (Arctoscopus japonicus) without swimbladder. The density contrast was measured by the volume displacement method while the sound speed contrast was measured by the acoustic measurements of travel time (time-of-flight method). The swimming angle was measured by dividing it into daytime, nighttime, daytime feeding and nighttime feeding. The g was 1.001 to 1.067 with an average (± standard deviation) of 1.032 (± 0.017), and the h was 1.007 to 1.022 with an average (± standard deviation) of 1.015 (± 0.003). The swimming angles (mean ± standard deviation) were 16.8 ± 10.3° during the daytime, 1.9 ± 12.3° during the nighttime, 30.2 ± 12.6° in the daytime feeding and 35.0 ± 13.2° in the nighttime feeding. These results will provide important parameters input to calculate theoretical scattering models for estimating the acoustic target strength of sandfish.