• 제목/요약/키워드: Ackermann's formula

Search Result 2, Processing Time 0.018 seconds

Application to Stabilizing Control of Nonlinear Mobile Inverted Pendulum Using Sliding Mode Technique

  • Choi, Nak-Soon;Kang, Ming-Tao;Kim, Hak-Kyeong;Park, Sang-Yong;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • This paper presents a sliding mode controller based on Ackermann's formula and applies it to stabilizing a two-wheeled mobile inverted pendulum in equilibrium. The mobile inverted pendulum is a system with an inverted pendulum on a mobile cart. The dynamic modeling of the mobile inverted pendulum was established under the assumptions of a cart with no slip and a pendulum with only planar motion. The proposed sliding mode controller was based upon a class of nonlinear systems whose nonlinear part of the modeling can be linearly parameterized. The sliding surface was obtained in an explicit form using Ackermann's formula, and then a control law was designed from reachability conditions and made the sliding surface attractive to the equilibrium state of the mobile inverted pendulum. The proposed controller was implemented in a Microchip PIC16F877 micro-controller. The developed overall control system is described. The simulation and experimental results are presented to show the effectiveness of the modeling and controller.

Design of a Discrete Time Sliding Mode Controller for Laser Marking System (레이저 마킹 시스템의 이산시간 슬라이딩 모드 제어기 설계)

  • 이충우;채수경;최재모;정정주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.304-311
    • /
    • 2004
  • In this paper we present a technique of discrete-time sliding mode controller design for assigning eigenvalues of sliding mode and determining a convergence rate to sliding surface. First the sliding mode coefficient is designed via Ackermann s formula. Then a linear controller is designed to enforce sliding mode such that the resulting closed loop yields the desired eigenvalues. As we use a linear control instead of nonlinear control, chattering is nearly eliminated. Simulation and experimental results are included to show the effectiveness of the proposed method for Laser Marking System.