• Title/Summary/Keyword: Acidiphilium cryptum

Search Result 2, Processing Time 0.014 seconds

Real-Time PCR Analysis of Metabolic Pathway of PHB in Acidiphilium cryptum DX1-1

  • Xu, Ai-Ling;Xia, Jin-Lan;Liu, Ke-Ke;Li, Li;Yang, Yu;Nie, Zhen-Yuan;Qiu, Guan-Zhou
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.71-77
    • /
    • 2010
  • The time, yield, and related genes expression of PHB accumulation of Acidiphilium cryptum DX1-1 were investigated under four different initial C/N ratios, 1.2, 2.4, 7.5, and 24. The results of time and yield of poly-$\beta$-hydroxybutyrate (PHB) accumulation show that the initial C/N ratio of 2.4 was optimum for strain DX1-1 to accumulate PHB, but both higher and lower initial C/N ratios did not favor that process. Based on the genome of Acidiphilium cryptum JF-5, 13 PHB accumulation related genes in strain JF-5 were chosen and successfully cloned from strain DX1-1. The differential expressions of the 13 functional genes, in different C/N ratios as cited above, were then studied by real-time PCR. The results show that all the 13 genes were most upregulated when the initial C/N ratio was 2.4, and among which the gene Acry_3030 encoding poly-$\beta$-hydroxybutyrate polymerase and Aery_0626 encoding acetyl-CoA synthetase were much more upregulated than the other genes, which proved that they play the most important role for PHB accumulation, and acetate is the main initial substance for PHB accumulation for strain DX1-1. Potential regulatory motifs analysis showed that the genes related to PHB accumulation are regulated by different promoters and that the motif had weak similarity to the model promoters, suggesting that PHB metabolism in Acidiphilium cryptum may be mediated by a different mechanism.

Evaluation of the Effect of Mine Drainage on the Aquatic Environment by Quantitative Real-time PCR (실시간 정량 중합효소연쇄반응을 이용한 광산 배수의 수계 영향 평가)

  • Han, Ji-Sun;Seo, Jang-Won;Ji, Won-Hyun;Park, Hyun-Sung;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.121-130
    • /
    • 2010
  • Metals and sulfate can be considerably dissolved at low pH condition in the acid mine drainage(AMD) and it would make an environmental problems. There are only few of acid mine drainage treatment systems in Korea which are operating, but these still have an effect on the surrounding stream. In this study, quantification of indicator microorganisms was conducted to judge the environmental impact of AMD on microflora by quantitative real-time PCR in the drainage samples of four mines and the water samples of each surrounding stream. Two species of iron reducing bacteria(Rhodoferax ferrireducens T118 and Acidiphilium cryptum JF-5) were selected for indicator bacteria based on 16S rRNA cloning analysis, and sulfate reducing bacteria(Desulfosporosinus orientus), iron and sulfur oxidizing bacteria(Acidothiobacillus ferrooxidans) and iron oxidizing bacteria(Leptosprillum ferrooxidans) were included into indicator since these were found in the previous studies on the mining area. Thereafter, the comparative analysis of four mines were established by the microbiological variation index and it was determined that the biological environment effect of AMD is highest in Samtan mine which doesn t contain treatment system by the value.