• Title/Summary/Keyword: Acidifier Blend

Search Result 2, Processing Time 0.02 seconds

Comparison of Single and Blend Acidifiers as Alternative to Antibiotics on Growth Performance, Fecal Microflora, and Humoral Immunity in Weaned Piglets

  • Ahmed, S.T.;Hwang, J.A.;Hoon, J.;Mun, H.S.;Yang, C.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.93-100
    • /
    • 2014
  • The banning of the use of antibiotics as feed additive has accelerated investigations of alternative feed additives in animal production. This experiment investigated the effect of pure citric acid or acidifier blend supplementation as substitute for antibiotic growth promoters on growth performance, fecal microbial count, and humoral immunity in weaned piglets challenged with Salmonella enterica serover Typhimurium and Escherichia coli KCTC 2571. A total of 60 newly weaned piglets (crossbred, 28-d-old; average 8 kg initial weight) were randomly assigned to four dietary treatments in a completely randomized design. Dietary treatments included NC (negative control; basal diet), PC (positive control; basal diet+0.002% apramycin), T1 (basal diet+0.5% pure citric acid), and T2 (basal diet+0.4% acidifier blend). All piglets were orally challenged with 5 mL of culture fluid containing $2.3{\times}10^8$ cfu/mL of E. coli KCTC 2571 and $5.9{\times}10^8$ cfu/mL of S. typhimurium at the beginning of the experiment. The PC group showed the highest ADG and ADFI, whereas gain:feed was improved in the PC and T1 group (p<0.05). All dietary treatments showed significant reduction in fecal counts of Salmonella and E. coli, compared to NC (p<0.05), with PC being better than T1 and T2. Significant elevation in fecal Lactobacillus spp. counts was shown by treatments with T1, T2, and PC, whereas Bacillus spp. counts were increased by treatment with T1 and T2 compared to NC and PC diet (p<0.05). Serum IgG concentration was increased by T1 diet (p<0.05), whereas IgM and IgA were not significantly affected by any of the dietary treatments (p>0.05). From these above results, it can be concluded that, as alternatives to antibiotics dietary acidification with pure citric acid or acidifiers blend did not fully ameliorate the negative effects of microbial challenges in respect of growth performance and microbial environment, however improved immunity suggested further research with different dose levels.

Acidification of drinking water improved tibia mass of broilers through the alterations of intestinal barrier and microbiota

  • Zhang, Huaiyong;Guo, Yujun;Wang, Ziyang;Wang, Yongshuai;Chen, Bo;Du, Pengfei;Zhang, Xiangli;Huang, Yanqun;Li, Peng;Michiels, Joris;Chen, Wen
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.902-915
    • /
    • 2022
  • Objective: Diet acidification supplementation is known to influence intestinal morphology, gut microbiota, and on phosphorus (P) utilization of broilers. Alterations in intestinal barrier and microbiota have been associated with systemic inflammation and thus regulating bone turnover. Hence the effect of acidifier addition to drinking water on tibia mass and the linkages between intestinal integrity and bone were studied. Methods: One-d-old male broilers were randomly assigned to normal water (control) or continuous supply of acidified water (2% the blend of 2-hydroxy-4-methylthiobutyric acid, lactic, and phosphoric acid) group with 5 replicates of 10 chicks per replicate for 42 d. Results: Acidification of drinking water improved the ash percentage and calcium content of tibia at 42 d. Broilers receiving acidified water had increased serum P concentration compared to control birds. The acidified group showed improved intestinal barrier, evidenced by increased wall thickness, villus height, the villus height to crypt depth ratio, and upregulated mucin-2 expression in ileum. Broilers receiving drinking water containing mixed organic acids had a higher proportion of Firmicutes and the ratio of Firmicutes and Bacteroidetes, as well as a lower population of Proteobacteria. Meanwhile, the addition of acidifier to drinking water resulted in declined ileal and serum proinflammatory factors level and increased immunoglobulin concentrations in serum. Concerning bone remodeling, acidifier addition was linked to a decrease in serum C-terminal cross-linked telopeptide of type I collagen and tartrate-resistant acid phosphatase reflecting bone resorption, whereas it did not apparently change serum alkaline phosphatase activity that is a bone formation marker. Conclusion: Acidified drinking water increased tibia mineral deposition of broilers, which was probably linked with higher P utilization and decreased bone resorption through improved intestinal integrity and gut microbiota and through decreased systemic inflammation.