• Title/Summary/Keyword: Acidic gases

Search Result 34, Processing Time 0.024 seconds

Highly Sensitive Trimethylamine Sensing Characteristics of V-doped NiO Porous Structures (바나듐이 도핑된 NiO 다공성 구조의 고감도 Trimethylamine 감응 특성)

  • Park, Sei Woong;Yoon, Ji-Wook;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.218-222
    • /
    • 2016
  • Pure and V-doped NiO porous structures were prepared by the evaporation-induced surfactant assembly and subsequent pyrolysis of assembled structures, and their gas sensing characteristics were investigated. Pure NiO porous structures showed negligible gas responses (S=$R_g/R_a$, $R_g$: sensor resistance in analytic gas; $R_a$: sensor resistance in air) to 5 ppm trimethylamine (S=1.17) as well as other interfering gases such as ethanol, p-xylene, toluene, benzene and formaldehyde (S=1.02-1.13). In contrast, the V-doped NiO porous structures exhibited a high response and selectivity to 5 ppm trimethylamine (S=14.5) with low cross-responses to other interfering gases (S=4.0-8.7) at $350^{\circ}C$. The high gas response of V-doped NiO porous structures to trimethylamine was explained by electronic sensitization, that is, the increase in the chemoresistive variation due to the decrease in the hole concentration. The enhanced selectivity to trimethylamine was discussed in relation to the interaction between basic trimethylamine gas and acidic V catalysts.

The Characteristics of PM2.5 and Acidic Air Pollutants in the Vicinity of Industrial Complexes in Gwangyang (광양산업단지 인근지역 대기 중 미세먼지 (PM2.5)와 산성오염물질 특성)

  • Kang, Byung-Wook;Jeong, Man-Ho;Jeon, Jun-Min;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.16-29
    • /
    • 2011
  • The cyclone/annular denuder system/filter pack sampling system (ADS) was used to collect data set of the acidic air pollutants in the vicinity of industrial complexes in Gwangyang. The data set was collected during sixty different days with 24 hour sampling period from January 8, 2008 through November 12, 2008. The annual mean concentrations of $HNO_3$, $HNO_2$, $SO_2$ and $NH_3$ in the gas phase were 1.12, 1.40, 10.2 and 1.28 ${\mu}g/m^3$, respectively. The annual mean concentrations of $PM_{2.5}$ ($d_p$<2.5 ${\mu}m$), $SO_4^{2-}$, $NO_3^-$, and $NH_4^+$ in the particulate phase were 29.2, 8.25, 3.30 and 3.42${\mu}g/m^3$, respectively. $HNO_3$ and $NH_3$ exhibited higher concentrations during the summer, while $HNO_2$, $PM_{2.5}$, $NO_3^-$ and $NH_4^+$ were higher during the winter. The highest level of $SO_2$ was, unlikely, observed in the summer and $SO_4^{2-}$ was not showed seasonal variation. $SO_4^{2-}$, $NO_3^-$, and $NH_4^+$ accounted for 49~57% of the $PM_{2.5}$ mass. $SO_4^{2-}$ was the most abundant component, which constituted 23~40% of $PM_{2.5}$. High correlations were found among $PM_{2.5}$, $SO_4^{2-}$, $NO_3^-$, and $NH_4^+$.

High Efficiency Hybrid Ion Exchange Chemical Filter for Removal of Acidic Harmful Gases (산성유해가스 제거를 위한 고효율 음이온교환 복합 폼 화학필터의 제조)

  • Jung, Youn Seo;Kim, In Sik;Hyeon, Seung Mi;Hwang, Taek Sung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.539-546
    • /
    • 2017
  • In this study, an outstanding anion exchange chemical filter was prepared for acidic gas removal. Commercial anion exchange resin was attached to polyurethane (PU) foam by using different types of pressure sensitive adhesive (PSA). The water and chemical resistance and also adhesive elongation were investigated. Also, the behavior of HCl and HF adsorption was evaluated as functions of the initial concentration and flow rate. ATE-701, AT-4000C and HCA-1000 showed 900, 1,500% and 2,400% of the elongation, respectively. It was confirmed that the desorption ratio of HCA-1000 was less than 6% and had excellent durability in water and chemical resistance tests. The adsorption occurred faster as the concentration and flow rate of HCl and HF increased. But 100% adsorption equilibrium occurred after 110 minutes, regardless of the concentration and flow rate. In addition, SEM morphology showed that the adhesive was uniformly dispersed, while the porous structure of the ion exchange resin was maintained, and the chemical filter exhibited excellent durability for the adsorption/desorption process.

Influence on the Indoor Air Quality by Ambient Air during the Summer Season (여름철 실외 공기가 실내 공기질에 미치는 영향)

  • 이학성;강병욱
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.637-644
    • /
    • 1997
  • The purpose of thins study was to quantitatively determine the Indoor Infiltration of pollutants of outdoor origin. The relationship between Indoor and outdoor air is dependent, to a large extent. on the rate of k exchange between these two environments. Mean Indoor/outdoor ratios measured from thins study were: 0.70 for HNO3; 1.60 for HNO2: 0.56 far SOg: 1.30 for mf3: 0.96 for PM2.5(dP<2.5mm: 0.89 for SO4a': 0.87 for NO3· and 0.79 for NH4 'Mean Indoor concentrations for PMa s, SO4a., HNO9, NO3 and NIL' were similar to outdoor levels. Indoor HNO2 and mB3 values were h19her than outdoors. However, the Indoor level of SO2 was lower than ambient level.

  • PDF

Properties and Development of Halogen Free Flame Retardant Cable (Halogen Free 난연 케이블의 제특성 및 개발)

  • Choi, W.K.;Choi, W.;Seo, S.J.;Yang, H.J.;Won, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.768-770
    • /
    • 1992
  • Conventional flame retardant cable using PVC or CR materials generate considerable amount of toxic and acidic gas (HCI etc.) together with excessive black smoke during a fire. The newly developed halogen free materials have dissolved the problem of halogen acid gases. This paer describes the development of this power cable insulation and sheath, using halogen free materals.

  • PDF

Analysis of Precipitation Chemistry at Rural Site in the Eastern Coast, Korea

  • Kang, Gong-Unn;Shin, Dae-Ywen;Kim, Hui-Kang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E1
    • /
    • pp.29-39
    • /
    • 2003
  • The 10-day interval basis measurements of precipitation samples at Yangyang, the rural and coastal area on the eastern coast of the Korea peninsula were accomplished for understanding the precipitation chemistry and the temporal variations of major ions September 1991 to February 1997. The precipitation was slightly acidic, and 37% of the samples in winter were pH less than 4.5. The concentrations of cations were found on the order $Na^+\;>\;{NH_4}^+\;>\;Ca^{2+}\;>\;Mg^{2+}\;>\;K^+$ and those of anions followed the pattern $Cl^-\;>\;{SO_4}^{2-}\;>\;{NO_3}^-$. Neglecting sea salt components, the major ions controlling precipitation chemistry were nss-${SO_4}^{2-}$ and ${NO_3}^-$ in anion and ${NH_4}^+$ and nss-$Ca^{2+}$ in cation. Concentrations of these ions were lower than those measured at urban sites in Korea, but were higher than those measured in Japan. Most of nss-${SO_4}^{2-}$ and ${NO_3}^-$ were neutralized by ammonia and calcium species, especially alkaline soil particles in spring and ammonia gas in other seasons. Considering also the annual value of [nss -${SO_4}^{2-}$]/[${NO_3}^-$] ratio of 2.62 and the neutralizing factors, ammonium sulphate compounds were dominant. Annual mean concentrations of these ions showed relatively small fluctuations, while larger seasonal variations were observed with higher levels in spring and winter. Precipitation amount, influence extent of acidic gases and alkaline particles long-range transported from China continent, and energy consumption pattern in each season might be able to explain this seasonal trend.sonal trend.

A study of the removal efficiency of acidic gas at various operating conditions using Computation Fluid Dynamics (전산유체역학을 이용한 반건식 반응기의 운전조건에 따른 산성가스제거효율에 관한연구)

  • Lee, Geon-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.93-101
    • /
    • 2011
  • The modeling of SDR was carried out for the application of the solid waste incineration system. To find optimum operating condition for removal of acidic gases, computation fluid dynamic(CFD) model was used. In this study, the temperature profile of SDR(spray dry reactor) and the gas velocity profile for different models were investigated. In this model, the diameter of SDR was 3 meter and the height of SDR was 9 meter. The amount of inlet combustion gas of SDR was $6,125Nm^3/hr$ and the inlet temperature of SDR was 493 K. The amount of lime injection of SDR was 151 kg/hr. When the inlet shape of SDR was changed, the temperatur of SDR was changed and the gas velocity of SDR was 0.48 m/sec to 1.17m/sec and the outlet gas velocity of SDR was 6.9 m/sec to 7.42m/sec As a result of modeling, the average velocities in SDR and outlet were 0.489 m/sec and 7.424 m/sec, respectively, in which the temperature of outlet in SDR was 448 K.

Efficient Management of the pH of the Wet Scrubber Washing Water for Risk Mitigation (리스크 완화를 위한 Wet Scrubber 세정수 pH의 효율적 관리)

  • Joo, Dong-Yeon;Seoe, Jae Min;Kim, Myung-Chul;Baek, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.85-92
    • /
    • 2020
  • Wet Scrubber reacts the incoming pollutant gas with cleaning water (water + absorbent) to absorb pollutants and release the clean air to the atmosphere. Wet scrubbers and packed tower scrubbers using this principle are widely used in businesses that emit acid gases. In particular, in the etching process using hydrochloric acid (HCl), alkaline washing water (NaOH) having a pH of about 8 to 11 is used to absorb a large amount of acid gas. However, These salts are attached to the injection nozzle (nozzle), filling material (packing), and the demister (Demister), causing air pollution, human damage, and inoperability due to clogging and acid gas discharge. Therefore, In this study, an improvement plan was proposed to manage the washing water with pH 3~4 acidic washing water. The test method takes samples from the Wet Scrubber flue measurement laboratory twice a month for 1 year. Hydrogen chloride (HCl) concentration (ppm) was measured, and nozzle clogging and scale conditions were measured, compared, and analyzed through a differential pressure gauge and a pressure gauge. As a result of the check, it was visually confirmed that the scale was reduced to 50% or less in the spray nozzle, filler, and demister. In addition, the emission limit of hydrogen chloride in accordance with the Enforcement Regulation of the Air Quality Conservation Act [Annex 8] met 3 ppm or less. Therefore, even if the washing water is operated in an acidic pH range of 3 to 4, it is expected to reduce air pollution and human damage due to clogging of internal parts, and it is expected to reduce maintenance costs such as regular cleaning or replacement of parts.

Study of Volcanic Gases and Hot Spring Water to Evaluate the Volcanic Activity of Mt. Baekdu (백두산 화산활동 평가를 위한 화산가스 및 온천수에 대한 연구)

  • Lee, Sangchul;Yun, Sung-Hyo
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.171-180
    • /
    • 2017
  • This study performed the analysis on the volcanic gases and hot spring waters from the Julong hot spring at Mt. Baekdu during the period from July 2015 to August 2016. Also, we confirmed the errors that $HCO_3{^-}$ concentrations of hot spring waters in the previous study (Lee et al. 2014) and tried to improve the problem. Dissolved $CO_2$ in hot spring waters was analyzed using gas chromatograph in Lee et al. (2014). Improving this, from 2015, we used TOC-IC to analysis dissolved $CO_2$. Also, we analyzed the $Na_2CO_3$ standard solutions of different concentrations using GC, and confirmed the correlation between the analytical concentrations and the real concentrations. However, because the analytical results of Julong hot spring water were in discord with the estimated values based on this correlation, we can't estimate the $HCO_3{^-}$ concentrations of 2014 samples. During the period of study, $CO_2/CH_4$ in volcanic gases are gradually decreased, and this can be interpreted in two different ways. The first interpretation is that the conditions inside the volcanic edifice are changing into more reduction conditions, and carbon in volcanic gases become more favorable to distribute into $CH_4$ or CO than $CO_2$. The second interpretation is that the interaction between volcanic gases and water becomes greater than past, and the concentrations of $CO_2$ which have much higher solubility in water decreased, relatively. In general, the effect of scrubbing of volcanic gas is strengthened during the quiet periods of volcanic activity rather than active periods. Meanwhile, the analysis of hot spring waters was done on the anion of acidic gases species, the major cation, and some trace elements (As, Cd, Re).

A Case Study of Ionic Components in the Size-resolved Ambient Particles Collected Near the Volcanic Crater of Sakurajima, Japan

  • Ma, Chang-Jin;Kim, Ki-Hyun;Kang, Gong-Unn
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.72-79
    • /
    • 2010
  • In this study, the ionic composition of volcanogenically derived particles and their temporal and spatial distributions have been investigated to evaluate the impact of the volcanic eruption on the local ecosystem and residents. To this end, an intensive field study was conducted to measure the size-segregated particulate matters at the east part of Sakurajima in Japan. Fractionated sampling of particles into > $PM_{10}$, $PM_{10-2.5}$, and $PM_{2.5}$ was made by a multi nozzle cascade impactor (MCI). The concentration of various ions present in the size-resolved particles was determined by Ion chromatography. The time dependent 3-dimensional Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model developed by the NOAA Air Resources Laboratory (ARL) indicated that the sampling site of this work was affected by the volcanic aerosol particles plume. The temporal distributions of sulfate and $PM_{2.5}$ during the field campaign were significantly variable with important contributions to particle mass concentration. The chlorine loss, suspected to be caused by acidic components of volcanic gases, occurred predominantly in fine particles smaller than $10\;{\mu}m$.