• Title/Summary/Keyword: Acidic chloride

Search Result 129, Processing Time 0.025 seconds

ENHANCED COAGULATION: DETERMINATION OF CONTROLLING CRITERIA AND AN EFFECT ON TURBIDITY REMOVAL

  • Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.105-111
    • /
    • 2005
  • The applicability of the USEPA's (United States Environmental Protection Agency) three criteria of enhanced coagulation (criterion 1-TOC level less than 2 mg/l. before chlorination; criterion II-% requirement of TOC removal; criterion III-point of diminishing return) for Korean waters was evaluated in this study. This study also investigated an effect of enhanced coagulation on turbidity removal, and attempted to identify the best coagulant for enhanced coagulation. Three different waters were used in this study: one river water and two lake waters. five different coagulants were used: alum, liquid alum, PACl, ferric chloride with and without water. Results of this study showed that all three criteria were achievable for the tested waters. For these waters, controlling criterion was found to be different depending upon raw water characteristics. When initial Toe level was low(< 4 mg/L), criterion I (< 2 mg/L) could be the controlling criterion. As TOC level increased, criterion II (% TOC removal) became the controlling criteria. It was possible to achieve different goals of turbidity and TOC removals. Although the optimum region of TOC removal was more acidic than that of turbidity removal, there was no conflict between these two removals. The best coagulant was found to be different depending upon the evaluation tool: maximum and optimum removal. ferric chloride was more effective than alum in terms of the maximum TOC removal, while Al-based coagulant such as alum or PACl was the best coagulant in terms of the optimum TOC removal.

The Study on Emulsifying and Foaming Properties of Buckwheat Protein Isolate (분리 메밀 단백질의 유화 및 기포특성에 관한 연구)

  • 손경희;최희선
    • Korean journal of food and cookery science
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 1993
  • Buckwheat protein isolate was tested for the effects of pH, addition of sodium chloride and heat treatment on solubility, emulsion capacities, emulsion stability, surface hydrophobicity, foam capacities and foam stability. The solubility of buckwheat protein isolate was affected by pH and showed the lowest value at pH 4.5, the isoelectric point of buckwheat protein isolate. The solubility significantly as the pH value reached closer to either ends of the pH, i.e., pH 1.0 and 11.0. The effects of NaCl concentration on solubility were as follows; at pH 2.0, the solubility significantly decreased when NaCl was added; at pH 4.5, it increased above 0.6 M; at pH 7.0 it increased; and at pH 9.0 it decreased. The solubility increased above $80^{\circ}C$, at all pH ranges. The emulsion capacity was the lowest at pH 4.5. It significantly increased as the pH approached higher acidic or alkalic regions. At pH 2.0, when NaCl was added, the emulsion capacity decreased, but it increased at pH 4.5 and showed the maximum value at pH 7.0 and 9.0 with 0.6 M and 0.8 M NaCl concentrations. Upon heating, the emulsion capacity decreased at acidic pH's but was maximised at pH 7.0 and 9.0 on $60^{\circ}C$ heat treatment. The emulsion stability was the lowest at pH 4.5 but increased with heat treatment. At acidic pH, the emulsion stability increased with the increase in NaCl concentration but decreased at pH 7.0 and 9.0. Generally, at other pH ranges, the emulsion stability was decreased with increased heating temperature. The surface hydrophobicity showed the highest value at pH 2.0 and the lowest value at pH 11.0. As NaCl concentrationed, the surface hydrophobicity decreased at acidic pH. The NaCl concentration had no significant effects on surface hydrophobicity at pH 7.0, 9.0 except for the highest value observed at 0.8 M and 0.4 M. At all pH ranges, the surface hydrophobicity was increased, when the temperature increased. The foam capacity decreased, with increased in pH value. At acidic pH, the foam capacity was decreased with the increased in NaCl concentration. The highest value was observed upon adding 0.2 M or 0.4 M NaCl at pH 7.0 and 9.0. Heat treatments of $60^{\circ}C$ and $40^{\circ}C$ showed the highest foam capacity values at pH 2.0 and 4.5, respectively. At pH 7.0 and 9.0, the foam capacity decreased with the increased in temperature. The foam stability was not significantly related to different pH values. The addition of 0.4 M NaCl at pH 2.0, 7.0 and 9.0 showed the highest stability and the addition of 1.0 M at pH 4.5 showed the lowest. The higher the heating temperature, the lower the foam stability at pH 2.0 and 9.0. However, the foam stability increased at pH 4.5 and 7.0 before reaching $80^{\circ}C$.

  • PDF

Sol-Gel Encapsulation as Matrix for Potentiometric Nitrite-Selective Membranes Doped with Chloro (5, 10, 15, 20-Tetraphenylporphyrinato) Cobalt (III)

  • Zhou, Hao;Meyerhoff, Mark E.;Bi, Kai-Shun;Park, Sung-Bae
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.335-341
    • /
    • 2009
  • Organic-inorganic hybrid sol-gel matrices were used as hosts for chloro (5, 10, 15, 20-tetraphenylporphyrinato) cobalt (III) (Co[TPP]Cl), a known ionophore for nitrite. The sol-gel precursor was prepared by the reaction of (3-isocyanopropyl) triethoxysilane with 1,4-butanediol. An appropriate amount of the anion-exchanger, tridodecylmethylammonium chloride (TDMAC) and the plasticizer, tributylphosphate (DBP) were used as membrane additives. On mixing with an acidic catalyst, the sol-state precursors slowly gelled, yielding a membrane in which the active components, Co[TPP]Cl and TDMAC, were encapsulated. The performances of the sol-gel membrane-based electrodes were compared to those of Co[TPP]Cl-based poly(vinyl chloride) (PVC) membrane electrodes. Membranes with a molar ratio of Co[TPP]Cl: TDMAC (1 : 0.1) showed reasonable response slopes toward nitrite. The response slopes were typically 53 mV/decade between $10^{-5.4}$ and $10^{-1.0}\;M$. Selectivities toward nitrite over hydrophilic and small anions such as chloride were somewhat inferior to those observed with PVC-based membranes, but selectivities over lipophilic anions were quite similar. Reduced asymmetry potentials due to protein adsorption were found to occur with the sol-gel matrix relative to PVC-based films when the sensors were employed as a detector in flow-through configuration.

Effect of various cleaners and mordants to bond strength of light curing glass ionomer cements to dentin (Smear layer 제거와 금속 이온 처리가 광중합형 글라스아이오노머와 상아질간의 결합강도에 미치는 영향)

  • Lee, Won-Seob;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.45-63
    • /
    • 1994
  • 128 freshly extracted human molars were used to study the interaction between dentinal smear layer removal with various agents, and the shear bond strength of a light cured glass ionomer cement to dentin. It was proposed that the removal of smear layers using acidic cleaners followed by incorporation of Fe mordant with dentin could enhanced the infiltration of monomer component in light curing glass ionomer cement and resulted in a high bond strength. For the first treatment process for removal of smear layers on the surfaces of dentin, 50 % citric acid, 10% maleic acid and 10 % phosphoric acid were used, and for the second treatment process, 15% ferric chloride, 6.8% ferric oxalate or 30% potassium oxalate were used. Distilled water was used as a control. After double sequential treatment on dentin, a light curing glass ionomer cement was bonded to dentin. After being immersed in water at 31'C for 24 hours, shear bond strengths were measured Instron testing machine(Model No.4202, USA). Surface changes were also observed using SEM (Hitachi, S-2300, Japan) after treatment process with each agents. The following conclusions were drawn : 1. Dentin surface cleaned with maleic acid and treated with ferric oxalate showed the highest bond strength with light curing glass ionomer cement. 2. Bond strengths of glass ionomer cement to dentin treated with maleic acid or citric acid were the highest, and that treated with phosphoric acid showed the lowest. 3. The effect of ferric oxalate on shear bond strength to dentin was always higher than that of ferric chloride. 4. The smear layers were clearly removed and the orifices of dentinal tubules were opened widely by the citric acid, maleic acid and phosphoric acid. 5. The orifices of dentinal tubules opened after using the first solution were closed with the treatment of ferric chloride. 6. The precipitate like crystals were formed on dentin surfaces and tubules, but a significant decrease in bond strength of glass ionomer cement to dentin surface treated with potassium oxalate.

  • PDF

Zn-Cr Alloy Plating from Acidic Chloride Bath: Effect of Temperature and Current Densities on Composition of Electrodeposits (산성염화욕에서의 Zn-Cr합금도금 : 합금화에 미치는 전류밀도와 온도의 영향)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.285-290
    • /
    • 2018
  • The steel has been used in modern industry, car maker and electric appliance. The steel have some problem, specially corrosion problem. To solve corrosion problem, Zn electrodeposit on steel have been adapted. Recently, The modern industry asks to increase corrosion resistance. Naturally, Increasing corrosion resistance increases the thickness of Zn electrodeposit. But increasing thickness of Zn electrodeposit has some problems. In making part, There are some crack. This crack cause to decrease corrosion resistance. To solve this problem, it is interested in Zn Based alloy electrodeposit such as Zn-Cr. Here, the influence of the electrolytic conditions on the composition of the alloy plating in the chloride bath was investigated. The results are explained by the cathode overvoltage curve of Cr and Zn. As the current density of the cathode increases, Zn content of electrodeposit decrease and Cr content of electrodeposit increase. As the temperature of the electrolyte increases, Zn content of electrodeposit decrease and Cr content of electrodeposit increase.

Chemical Resistance Characteristics of the Chlorinated Polyvinyl Chloride Microfiltration Flat-sheet Membrane with respect to Immersion Time (침지시간에 따른 Chlorinated Polyvinyl Chloride 정밀여과용 평막의 내화학적 특성)

  • Ryu, Jae-Sang;Son, Jae-Ik;Kim, Hee-Jun;Chung, Kun-Yong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.324-332
    • /
    • 2009
  • This study aimed to measure chemical resistance properties of the microfiltration flat-sheet membrane made by Chlorinated Polyvinyl Chloride (CPVC) with respect to the immersed time. The solutions of effective chlorine 0.5 wt% NaClO, HCl 1 wt% and pH 4 buffer under acidic condition, NaOH 4 wt% and pH 10 buffer under alkine condition were used as widely applied chemicals for membrane washing. The CPVC membrane samples were immersed in the above chemical solutions during 1, 3, 5 and 10 days at 5, 25 and $50^{\circ}C$, respectively. After then, the tensile strength and elongation at break as the chemical durability for the samples were measured and evaluated. The tensile strength decreased within 5% at $5^{\circ}C$, but decreased up to 17% at 25 and $50^{\circ}C$ for 0.5 wt% NaClO solution mainly used for membrane cleaning. The chemical resistance of CPVC membrane was good enough for HCl 1 wt% and pH 4 buffer acid solutions, but the most vulnerable for NaOH 4 wt% solution.

Diazotiation of Aminopyridines (아미노피리딘의 디아조화 반응)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.246-251
    • /
    • 2004
  • Diazotization of three aminopyridine such as 3-amino-2-chloropyridine, 5-amino-2-chloropyridine, and 3-aminopyridine were investigated. Preparation of pyridinediazonium tetrafluoroborates were carried out employing two different methods. Diazotization of aminopyridines with a chlorine substituent in the pyridine ring were conducted in acidic aqueous solution with sodium nitrite in 70% and 74% yields respectively. 3-Pyridinediazonium tetrafluoroborate without any ring subsituent was unstable in an aquous solution and the diazotiation of 3-aminopyridine was proceded in an anhydrous methylene chloride-etherial $BF_3$ solution with tert-butyl nitrite in 40% yield.

Synthesis of 8-Methyl-8,14-cycloberbine Derivatives (8-Methyl-8,14-cycloberbine 유도체 합성)

  • Hwang, Soon-Ho;Kim, Jae-Hyun;Yim, Hyung-Yub;Kim, Sin-Kyu
    • YAKHAK HOEJI
    • /
    • v.38 no.4
    • /
    • pp.451-454
    • /
    • 1994
  • In accordance with reported references, 8-methyl-8,14-cycloberbine was derived from berberinephenolbetaine. On acidic treatment the 8-methyl-8,14-cycloberbines were converted easily to the compounds $1{\sim}7$ in good yields. We developed a novel method for a synthesis of the C8-N bond adduct compounds 8 and 9 from 8-methyl-8,14-cycloberbine by treatment with oxalyl chloride, and 1,3-dichloroaceton.

  • PDF

Effect of Bath Conditions and Current Density on Stress and Magnetic Properties of Ni-Fe Nano Thin Films Synthesized by Electrodeposition Methods (전기도금법으로 제조한 Ni-Fe 나노박막의 스트레스와 자기적 특성에 미치는 용액의 조건 및 전류밀도의 영향)

  • Koo, Bon-Keup
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.4
    • /
    • pp.137-143
    • /
    • 2011
  • The internal stress and magnetic properties (coercivity and squareness) of Ni-Fe nano thin film synthesized by electrodeposition method were studied as a function of acidic chloride bath conditions (composition and temperature) and current density. Fe deposition patterns were different depending on the temperature of the solution, the stress of film decreased with increasing the solution temperature, and the depending on the amount of Fe deposition showed a parabolic shape. The grain size of film was inversely proportional to stress of thin film. The internal stress of thin film and magnetic properties were deeply relevant, and the stress of thin film had a relationship with bath conditions and grain size of the thin film surface.

Surface-enhanced Raman Spectroscopy of Benzimidazolic Fungicides: Benzimidazole and Thiabendazole

  • Kim, Mak-Soon;Kim, Min-Kyung;Lee, Chul-Jae;Jung, Young-Mee;Lee, Mu-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2930-2934
    • /
    • 2009
  • Surface-enhanced Raman Scattering (SERS) spectroscopy is applied to the study of the adsorption of benzoimidazolic fungicides benzimidazole (BIZ) and thiabendazole (TBZ) on silver mirrors. The influence of pH on the adsorption mechanism was investigated. In case of BIZ, two different adsorption mechanisms are deduced depending on the experimental conditions: via the $\pi$ electrons of the ring in neutral conditions and through an ionic pairing of protonated nitrogen atom with the chloride adsorbed on the metal surface. The SERS spectra of TBZ revealed that most molecules were adsorbed on silver surface by the ${\pi}$ electrons in neutral and acidic conditions but in acid conditions, some molecules were adsorbed via the sulfur and nitrogen atoms tilted slightly to the surface.