• 제목/요약/키워드: Acidic chloride

검색결과 129건 처리시간 0.035초

화학사고 빈도가 높은 산 계열 물질의 취급 특성 연구 (A Study on the Characteristics of Production and Using for Acidic Chemicals with High Accident Frequency)

  • 김기준;이진선;윤영삼;정미숙;윤준헌;석광설
    • 한국위험물학회지
    • /
    • 제2권1호
    • /
    • pp.1-5
    • /
    • 2014
  • Acidic chemicals like sulfuric acid, nitric acid and hydrogen chloride take up 37% of the total chemical accidents which took place for the past 10 years. When an acidic chemical leak happens, fume is generated, diffusing into the air, which might cause serious damage to health of local residents and the environment. However, we have only little reference data for production and using of acidic chemicals. In this study, we investigated characteristics of production and using for acidic chemicals with high accident frequency. As a results, domestic chemical accidents were categorized according to chemical types and production, using, and handling characteristics of acidic chemicals were identified. Sulfuric acid was handled in the largest amount, followed in the order of hydrogen chloride, nitric acid, acrylic acid, and hydrogen fluoride. Sulfuric acid is used in the industry of manufacturing composite fertilizer and mainly used for manufacturing fertilizer. Hydrogen chloride is used in the industry of manufacturing basic chemicals for petrochemical family and mainly used for pH regulator. It is expected that this results could be used as preliminary data for making decisions on facilities required intensive management in order to prevent chemical accidents and prepare countermeasures against such accidents.

Effect of Cu Addition on the Properties of Duplex Stainless Steels

  • Hwangbo, D.;Yoo, Y.R.;Choi, S.H.;Choi, S.J.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제21권4호
    • /
    • pp.273-281
    • /
    • 2022
  • The effect of addition of Cu on the localized corrosion performance of aged duplex stainless steel in chloride media has yet to be explained in a consistent manner, and there is some controversy in the literature regarding the composition of stainless steel and the experimental conditions (pH, temperature, chloride concentration, etc.) used. In this work, the effect of the addition of Cu on the microstructure, hardness, and corrosion resistance of duplex stainless steel in an acidic chloride or high concentration sulfuric acid solutions was investigated for annealed and aged alloys. The Cu addition of annealed duplex stainless steel strengthened the alloy and reduced the ferrite contents of the alloy, and it also increased the polarization behavior in chloride or sulfuric solutions, except for the case of a high potential in acidic chloride solution. However, the Cu addition of aged duplex stainless steel reduced the formation of harmful phases such as sigma and kai and increased the polarization behavior in acidic chloride or sulfuric solutions up to 0.8 wt% of the Cu content, after which it slightly decreased at 0.8 wt% Cu or more.

ClC Chloride Channels in Gram-Negative Bacteria and Its Role in the Acid Resistance Systems

  • Minjeong Kim;Nakjun Choi;Eunna Choi;Eun-Jin Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권7호
    • /
    • pp.857-863
    • /
    • 2023
  • Pathogenic bacteria that colonize the human intestinal tract have evolved strategies to overcome acidic conditions when they pass through the gastrointestinal tract. Amino acid-mediated acid resistance systems are effective survival strategies in a stomach that is full of amino acid substrate. The amino acid antiporter, amino acid decarboxylase, and ClC chloride antiporter are all engaged in these systems, and each one plays a role in protecting against or adapting to the acidic environment. The ClC chloride antiporter, a member of the ClC channel family, eliminates negatively charged intracellular chloride ions to avoid inner membrane hyperpolarization as an electrical shunt of the acid resistance system. In this review, we will discuss the structure and function of the prokaryotic ClC chloride antiporter of amino acid-mediated acid resistance system.

금속염화물을 첨가한 루이스산 이온성 액체 촉매를 이용한 대두유로부터 바이오디젤 합성 (Synthesis of Biodiesel from Soybean Oil Using Lewis Acidic Ionic Liquids Containing Metal Chloride Salts)

  • 최재형;박용범;이석희;천재기;최재욱;우희철
    • Korean Chemical Engineering Research
    • /
    • 제48권5호
    • /
    • pp.643-648
    • /
    • 2010
  • 본 연구에서는 이온성 액체인 염화콜린에 5가지의 금속염화물을 첨가하여 루이스산 이온성 액체 촉매를 제조하고, 이 촉매를 사용하여 대두유로부터 바이오디젤을 합성하였다. 먼저 단독의 금속염화물인 염화주석과 염화아연, 염화알루미늄, 염화철(III), 염화구리(I) 촉매에 대하여 363~423 K 온도 범위에서 에스터 교환 반응의 반응성을 조사하였다. 5가지의 금속염화물 중 염화주석이 우수한 촉매 활성을 나타내었고, 이러한 경향과 같이 5가지의 루이스산 이온성 액체 촉매 중 $[Me_3NC_2H_4OH]Cl-2SnCl_2$의 촉매가 403 K에서 14시간 동안 유지:메탄올:촉매의 몰 비율 1:12:0.9인 조건으로 최대 91.1%의 높은 반응수율을 나타내었다. 단독의 염화주석 촉매와는 달리, $[Me_3NC_2H_4OH]Cl-2SnCl_2$의 촉매는 반응 후 액체-액체 이상계를 형성하여 반응물과 생성물로부터 쉽게 분리할 수 있으며, 5회 이상 재사용 후에도 활성이 거의 감소하지 않았다. 이러한 결과는 촉매의 수분에 대해 안정성과 강한 루이스 산성도의 특성에 기인한 것으로 생각된다. 또한 촉매에 대한 반응시간과 촉매 및 메탄올 몰 비율 등의 반응변수들에 대한 영향이 조사되었다.

스테인리스강의 국부부식 저항성 연구에 미세방울셀의 응용 (Applications of Micro-Droplet Cell to Study of Localized Corrosion Resistance of Stainless Steels)

  • 김성유;김희산
    • 전기화학회지
    • /
    • 제9권2호
    • /
    • pp.70-76
    • /
    • 2006
  • 마이크로 전기화학 실험법인 비접촉식 미세방울셀이 산 용액에 노출된 저 크롬이 함유된 스테인리스강(STS 316)과 같이 젖음성이 높은 전기화학계에 사용되는데 어려움이 있었다. 음압의 인가, 방울의 크기 제어 그리고 소수성의 개스킷의 사용은 높은 젖음성을 지닌 표면에서 비접촉식 미세방울셀의 적용을 가능하게 하였다. 개선된 미세방울셀의 신뢰성을 확인하고자 3종류의 다른 계-산성염화용액과 고 크롬 페라이트 스테인리스강, 산성염화용액과 STS 316 그리고 중성염화용액과 STS 316-에 대하여 개선된 미세방울셀로 국부부식 연구를 수행하였다. 첫째 산성용액에서 고 크롬강의 양극 분극 결과는 $\alpha/\sigma$ 계면 근처에서 국부부식이 크롬 고갈층에 의한 것임을 보여주었다. 둘째 산성용액에서 STS316의 양극 분극실험이 개선된 미세방울셀에서 성공적으로 수행됨을 확인할 수 있었다. 특히, 미세방울셀에서 얻어진 국부 양극 분극곡선을 통해 STS316의 내식성에 미치는 $\delta$-라이트 영향을 밝힐 수 있었다. 마지막으로 중성염화 용액에서 STS316의 양극 분극곡선은 핏팅 저항성이 $\delta$-페라이트보다 개재물에 의존됨을 보여주었다.

Polarization Behavior and Corrosion Inhibition of Copper in Acidic Chloride Solution Containing Benzotriazole

  • Sang Hee Suh;Youngjoon Suh
    • Corrosion Science and Technology
    • /
    • 제22권3호
    • /
    • pp.137-152
    • /
    • 2023
  • Polarization behavior and corrosion inhibition of copper in acidic chloride solutions containing benzotriazole were studied. Pourbaix diagrams constructed for copper in NaCl solutions with different BTAH concentrations were used to understand the polarization behavior. Open circuit potential (OCP) depended not only on chloride concentration, but also on whether a CuBTA layer was formed on the copper surface. Only when the (pH, OCP) was located well in the CuBTA region of the Pourbaix diagram, a stable corrosion inhibiting CuBTA layer was formed, which was confirmed by X-ray Photoelectron Spectroscopy (XPS) and a long-term corrosion test. The OCP for the CuBTA layer decreased logarithmically with increasing [Cl-] activity in the solution. A minimum BTAH concentration required to form a CuBTA layer for a given NaCl concentration and pH were determined from the Pourbaix diagram. It was found that 320 ppm BTAH solution could be used to form a corrosion-inhibiting CuBTA layer inside the corrosion pit in the sprinkler copper tube, successfully reducing water leakage rate of copper tubes. These experimental results could be used to estimate water chemistry inside a corrosion pit.

Extracellular Acidification Augments NLRP3-Mediated Inflammasome Signaling in Macrophages

  • Byeong Jun Chae;Kyung-Seo Lee;Inhwa Hwang;Je-Wook Yu
    • IMMUNE NETWORK
    • /
    • 제23권3호
    • /
    • pp.23.1-23.17
    • /
    • 2023
  • Inflammation is a series of host defense processes in response to microbial infection and tissue injury. Inflammatory processes frequently cause extracellular acidification in the inflamed region through increased glycolysis and lactate secretion. Therefore, the immune cells infiltrating the inflamed region encounter an acidic microenvironment. Extracellular acidosis can modulate the innate immune response of macrophages; however, its role for inflammasome signaling still remains elusive. In the present study, we demonstrated that macrophages exposed to an acidic microenvironment exhibited enhanced caspase-1 processing and IL-1β secretion compared with those under physiological pH. Moreover, exposure to an acidic pH increased the ability of macrophages to assemble the NLR family pyrin domain containing 3 (NLRP3) inflammasome in response to an NLRP3 agonist. This acidosis-mediated augmentation of NLRP3 inflammasome activation occurred in bone marrow-derived macrophages but not in bone marrow-derived neutrophils. Notably, exposure to an acidic environment caused a reduction in the intracellular pH of macrophages but not neutrophils. Concordantly, macrophages, but not neutrophils, exhibited NLRP3 agonist-mediated translocation of chloride intracellular channel protein 1 (CLIC1) into their plasma membranes under an acidic microenvironment. Collectively, our results demonstrate that extracellular acidosis during inflammation can increase the sensitivity of NLRP3 inflammasome formation and activation in a CLIC1-dependent manner. Thus, CLIC1 may be a potential therapeutic target for NLRP3 inflammasome-mediated pathological conditions.

Study on A Laser-induced Photoredox Reaction for the Extraction of Precious Elements from Aqueous Solutions

  • Kyuseok Song;Hyungki Cha;Lee, Jongmin;Park, Jongsoo;Lee, Yong-Ill
    • Nuclear Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.531-536
    • /
    • 2000
  • The extraction of precious metals from aqueous solutions is performed by using a photoredox reaction with a Q-switched Nd:YAG laser. The metallic silver was efficiently precipitated and extracted from the silver nitrate solution by laser photolysis. An optimum reaction condition for silver extraction was determined by adjusting various experimental factors such as type of reducing agent, type of acids and reaction time. The composition of the reaction product was analyzed and it was identified as metallic silver, not other molecular types. The photoreaction of chromium(III) chloride in an acidic aqueous solution was also investigated. The 355 nm laser light was better suited for the reaction of silver nitrate as well as chromium(III) chloride in an acidic solution compared to the 532 nm light.

  • PDF

프르브유닛 소자용 블레이드형 팁 제조방법 (A Fabrication Method of Blade Type Tip for Probe Unit Device)

  • 이근우;이재홍;김창교
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1436-1440
    • /
    • 2007
  • Beryllium copper has been known to be an important material for the various fields of industry because it can be used for mechanical and electrical/electronic components that are subjected to elevated temperatures (up to $400^{\circ}C$ for short times). Blade type tip for probing the cells of liquid crystal display(LCD) was fabricated using beryllium copper foil. The dry film resist was employed as a mask for patterning of the blade type tip. The beryllium copper foil was etched using hydrochloric acidic iron-chloride solution. The concentration, temperature, and composition ratio of hydrochloric acidic iron-chloride solution affect the etching characteristics of beryllium copper foil. Nickel with the thickness of $3{\mu}m$ was electroplated on the patterned copper beryllium foil for enhancing its hardness, followed by electroplating gold for increasing its electrical conductivity. Finally, the dry film resist on the bridge was removed and half of the nickel was etched to complete the blade type tip.