• Title/Summary/Keyword: Acid-Base Reaction

Search Result 226, Processing Time 0.019 seconds

A Study on characteristics of planosols in korea -Part I Yeongog series (우리나라에 분포(分布)된 반층토(盤層土)의 특성(特性)에 관(關)한 연구(硏究) -제(第)1보(報) 연용통(延谷統)에 관(關)하여)

  • Um, Ki Tae;Cho, Seong Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.2
    • /
    • pp.45-51
    • /
    • 1975
  • The morphological, physical, chemical, and mineralogical characteristics of planosols in Korea were studied in an effort to establish the suitabilition of the planosols for agricultural development. The Yeongog series which are planosols were established in Korea. Results from the Yeongog series are briefly as follows : 1. Morphologically, the surface soils are brown to dark brown friable loam and subsoils are of varied colors but mainly are dark brown, black and pale brown mottles. The texture of these horizons are silty clay loam with moderate to strong platy structure and clay cutans are on the ped faces. The consistences of these horizons are extremely compact and hard when moist and sticky, plastic when wet. The substrata show varied soil colors and loam to clay loam. 2. Physically, the clay content of the Yeongog soils is highest in the subsoils and gradually decreases below the subsoils. Water holding capacity and bulk desity is higher than in other mineral soils. 3. Chemically, the organic matter content is low and soil reaction ranges from very strongly to strongly acid. The cation exchange capacity is medium and base saturation a high. Active iron, easily reducible manganese and available silicate are high compared with normal soils. 4. In chemical composition of clay fraction of the Yeongog series, sesquioxide ratio, $Fe_2O_3$, $K_2O$ and MgO are high. The cation exchange capacity of the clay fraction is also very high. 5. The clay minerals in Yeongog series are mainly kaoline, vermiculite with Al interlayers and illite. The quarts, primary minerals are in the Yeongog soils. 6. These soils are formed in a warm, humid climate under native grasses on the terraces and rolling or hilly footslopes. In soil classification, the Yeongog soils are classified planosols with claypan. According to 7th approximation system in U.S.A., the Yeongog series are classified as Fragiudalfs because they have an argillic horizon, a hard pan and a high base saturation which is more than 35 percent and classified as Eutric Planosols by FAO/UNESCO classification system.

  • PDF

Potential Antitumor $\alpha$-Methylene-$\gamma$-butyrolactone-Bearing Nucleic Acid Base. 3. Synthesis of $5^1$-Methyl-$5^1$-[(6-substituted-9H-purin-9-yl)methyl]-$2^1$-oxo-$3^1$-methylenetetrahydrofurans

  • Kim, Jack-C.;Kim, Si-Hwan;Kim, Ji-A;Choi, Soon-Kyu;Park, Won-Woo
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.458-464
    • /
    • 1998
  • Search for a new $\alpha$-methylene-$\gamma$-butyrolactone-bearing 6-substituted purine as a potental antitumor agent has led to synthesize seven, hitherto unreported, $5^1$-Methyl-$5^1$-[(6-substituted-9H-purin-9-yl)methyl]-$2^1$-oxo-$3^1$- methylenetetrahydrofurans (H, Cl, l, $CH_3$, $NH_2$, SH, >C=O) (6a-g). These include $5^1$-Methyl-$5^1$-[(9H-purin-9-yl)methyll-$2^1$-oxo-$3^1$ -methylenetetrahydrofurans (6a), $5^1$-Methyl-$5^1$-[(6-chloro-9H-purin-9-yl)methyl]-$2^1$-oxo-$3^1$-methylenetetrahydr ofurans (6b), $5^1$-Methyl-$5^1$-[(6-chloro-9H-purin-9-yl) methyl]-$2^1$-oxo-$3^1$-methylenetetrahydrofurans (6c), $5^1$-Methyl-$5^1$-[(6-methyl-9H-purin-9-yl) methyl]-$2^1$-oxo-$3^1$-methylenetetrahydrofurans (6d), $5^1$-Methyl-$5^1$-[(9H-adenin-9-yl)methyll-$2^1$-oxo-$3^1$-methylenetetrahydrofurans (6e), $5^1$-Methyl-$5^1$-[(6-mercapto-9H-purin-9-yl) methyl]-$2^1$-oxo-$3^1$-methylenetetrahydrofurans (6f) and $5^1$-Methyl-$5^1$-[(9H-hypoxanthin-9-yl)methyll-$2^1$-oxo-$3^1$-methylenetetrahydrof urans (6g) which were made by the Reformatsky-type reaction of ethyl $\alpha$-(bromomethyl) acrylate with the corresponding (6-substituted-9H-purin-9-yl)-2-propanone intermediates (5a-g). These ketone intermediates 5a-g, 1-(9H-purin-9-yl)-2-propanone (5a), 1-(6-chloro-9H-purin-9-yl)-2-propanone (5b), 1-(6-iodo-9H-purin-9-yi)-2-propanone (5c), 1-(6-methyl-9H-purin-9-yl)-2-propanone (5d), 1-(9H-adenin-9-yl)-2-propanone (Se), 1-(6-mercapto-9H-purin-9-yl)-2-propanone (5f), and 1-(9H-hypoxanthin-9-yl)-2-propanone (5g) were directly obtained by the alkylation of the 6-substituted purine bases with the chloroacetone in the presence of $K_2$$CO_3$ (or NaH) under DMF (or DMSO). The preliminary in vitro cytotoxcity assay for the synthetic .alpha.-methylene-y-butyro-lactone compounds (6a-g) were determined against three cell lines (PM-3A, P-388, and K-562) and showed the moderate antitumor activity ($IC_50$ ranged from 1.4 to 4.3 $\mu\textrm{g}$/ml) with the compound $5^1$-methyl-$5^1$ -[(9H-hypoxanthin-9-yl)methyl]-$2^1$-oxo-$3^1$-methylenetetrahydrofuran (6g) showing the least antitumor activity.

  • PDF

Etiological Properties and Coat Protein Gen Analysis of Potato Virus Y Occuring in Potatoes of Korea (우리나라 감자에 발생하는 PVY의 병원학적 특성 및 외피단백질 유전자 분석)

  • ;Richard M. Bostock
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1995.06b
    • /
    • pp.77-96
    • /
    • 1995
  • To obtain basic informations for the improvement of seed potato production in Korea, some etiological properties of potato virus Y(PVY) distributed in the major seed potato production area(Daekwanryeong) were characterized, and the nucleotide and amino acid sequences of the coat protein gene of the PVY strains isolated were analyzed. PVY strains in Daekwonryeong, an alpine area, were identified to be two strains, PVYo and PVYN by symptoms of indicator plants, and their distribution in potato fields was similar. Major symptom on potato varieties by PVY was grouped as either mosaic alone or mosaic accompanied with veinal necrosis in the lower leaves. The symptom occurrence of the two symptoms was similar with Irish Cobbler, but Superior showed a higher rate of mosaic symptom than the other. The PVY strain which was isolated from potato cv. Superior showing typical mosaic symptoms produced symptoms of PVY-O on the indicator plants of Chenopodium amaranticolor, Nicotiana tabacum cv. Xanthi nc and Physalis floridana, but no symptom o Capsicum annum cv. Ace. Moreover, results from the enzyme-linked immunosorbent assay with monoclonal and polyclonal antibodies showed that the isolated PVY reacts strongly with PYV-O antibodies but does not react specifically with PVY-T antibodies. The purified virus particles were flexious with a size of 730$\times$11nm. On the basis of the above characteristics, the strain was identified to be a PVY-O and named as of PVY-K strain. The flight of vector aphids was observed in late May, however, the first occurrence of infected plants was in mid June with the bait plants surrounded with PVY-infected potato plants and early July with the bait plants surrounded with PVY-free potato plants. PVY infection rates by counting symptoms on bait plants (White Burley) were 1.1% with the field surrounded with PVY-free potato plants and 13.7% the fields surrounded with PVY-infected potato plants, showing the effect of infection pressure. The propagated PVY-K strain on tobacco(N. sylvestris) was purified, and the RNA of the virus was extracted by the method of phenol extraction. The size of PVY-K RNA was measured to be 9, 500 nucleotides on agarose gel electrophoresis. The double-stranded cDNAs of PVY-K coat protein(CP) gene derived by the method of polymerase chain reaction were transformed into the competent cells of E. coli JM 109, and 2 clones(pYK6 and pYK17) among 11 clones were confirmed to contain the full-length cDNA. Purified plasmids from pYK17 were cut with Sph I and Xba I were deleted with exonuclease III and were used for sequencing analysis. The PVY-K CP gene was comprised of 801 nucleotides when counted from the clevage site of CAG(Gln)-GCA(Ala) to the stop codon of TGA and encoded 267 amino acids. The molecular weight of the encoded polypeptides was calculated to be 34, 630 daltons. The base composition of the CP gene was 33.3% of adenine, 25.2% of guanine, 20.1% of cytosine and 21.4% of uracil. The polypeptide encoded by PVY-K CP gene was comprised of 22 alanines, 20 threonines, 19 glutamic acids and 18 glycines in order. The homology of nucleotide sequence of PVY-K CP gene with those of PVY-O(Japan), PVY-T(Japan), PVY-TH(Japan), PVYN(the Netherlands), and PVYN(France) was represented as 97.3%, 88.9%, 89.3%, 89.6% and 98.5%, respectively. The amino acid sequence homology of the polypeptide encoded by PVY-K CP gene with those encoded by viruses was represented as 97.4%, 92.5%, 92.9%, 92.9%, and 98.5%, respectively.

  • PDF

Genesis and Classification of the Red-Yellow Soils derived from Residuum on Acidic and Intermediate Rocks -II. Songjeong series (산성암(酸性岩) 및 중성암(中性岩)의 잔적층(殘積層)에 발달(發達)한 적황색토(赤黃色土)의 생성(生成) 및 분류(分類) -제(第)II보(報) 송정통(松汀統)에 관(關)하여)

  • Um, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.2
    • /
    • pp.75-81
    • /
    • 1973
  • The morphological, physical, and chemical properties of Sonjeong series derived from acidic crystalline rocks are presented. Also it deals with the genesis and classification of the Songjeong series. Morphologically these soils have brown to dark brown loam A horizons and yellowish red to red clay loam Bt horizons with moderate, medium subangular blocky structure and thin patchy clay cutans on the ped faces. C horizons are very deep, yellowish red to yellowish brown fine sandy loam or sandy loam with original rock structure. Physically distribution of particle size indicates that clay increases with depth up to argillic horizons but below the argillic horizons clay content decrease. The moisture holding capacity is fairly good in Songjeong soils. Chemically soil reaction is strongly to very strongly acid throughout the profile and content of organic matter is less than 1 per cent except A horizons. Cation exchange capacity ranges from 5 to 9 me/100g of soils and base saturation is less than 35 per cent throughout the profile. The natural fertility of Songjeong soils are usually low. It needs lime, organic matter, and heavy application of fertilizer for the crop land. These soils occur temperate and humid climate under coniferous, deciduous, and mixed forest vegetation. Songjeong soils are classified as Red-Yellow Soils. Characteristically Songjeong soils are similar to Red-Yellow Podzolic soils in the United States but lack of A2 horizons and are quite liket Red-Yellow Soils of the Japan. According to new classification system which is 7th approximation of USDA Songjeong soils can be classified as fine loamy, mesic family of Typic Hapludults and in the FAO/UNESCO project World Soil Map as Orthic Acrisols.

  • PDF

The Morphology, Physical and Chemical Characteristics of the Red-Yellow Soils in Korea (우리나라 전토양(田土壤)의 특성(特性) (저구릉(低丘陵), 산록(山麓) 및 대지(臺地)에 분포(分布)된 적황색토(赤黃色土)를 중심(中心)으로))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.35-52
    • /
    • 1973
  • Red Yellow Soils occur very commonly in Korea and constitute the important upland soils of the country which are either presently being cultivated or are suitable for reclaiming and cultivating. These soils are distributed on rolling, moutain foot slopes, and terraces in the southern and western parts of the central districts of Korea, and are derived from granite, granite gneiss, old alluvium and locally from limestone and shale. This report is a summary of the morphology, physical and chemical characteristics of Red Yellow Soils. The data obtained from detailed soil surveys since 1964 are summarized as follows. 1. Red-Yellows Soils have an A, Bt, C profile. The A horizon is dark colored coarse loamy or fine loamy with the thin layer of organic matter. The B horizon is dominantly strong brown, reddish brown or yellowish red, clayey or fine loamy with clay cutans on the soil peds. The C horizon varies with parent materials, and is coarser texture and has a less developed structure than the Bt horizon. Soil depth, varied with relief and parent materials, is predominantly around 100cm. 2. In the physical characteristics, the clay content of surface soil is 18 to 35 percent, and of subsoil is 30 to 90 percent nearly two times higher than the surface soil. Bulk density is 1.2 to 1.3 in the surface soil and 1.3 to 1.5 in the subsoil. The range of 3-phase is mostly narrow with 45 to 50 percent in solid phase, 30 to 45 percent in liquid one, and 5 to 25 percent in gaseous state in the surface soil; and 50 to 60 solid, 35 to 45 percent liquid and less than 15 percent gaseous in the subsoil. Available soil moisture capacity ranges from 10 to 23 percent in the surface soil, and 5 to 16 percent in the subsoil. 3. Chemically, soil reaction is neutral to alkaline in soils derived from limestone or old fluviomarine deposits, and acid to strong acid in other ones. The organic matter content of surface soil varying considerably with vegetation, erosion and cultivation, ranges from 1.0 to 5.0 percent. The cation exchange capacity is 5 to 40 me/100gr soil and closely related to the content of organic matter, clay and silt. Base saturation is low, on the whole, due to the leaching of extractable cations, but is high in soils derived from limestone with high content of lime and magnesium. 4. Most of these soils mainly contain halloysite (a part of kaolin minerals), vermiculite (weathered mica), and illite, including small amount of chlorite, gibbsite, hematite, quartz and feldspar. 5. Characteristically they are similar to Red Yellow Podzolic Soils and a part of Reddish Brown Lateritic Soils of the United States, and Red Yellow Soils of Japan. According to USDA 7th Approximation, they can be classified as Udu Its or Udalfs, and in FAO classification system to Acrisols, Luvisols, and Nitosols.

  • PDF

Characteristics and classification of paddy soils on the Gimje-Mangyeong plains (김제만경평야(金堤萬頃平野)의 답토양특성(沓土壤特性)과 그 분류(分類)에 관(關)한 연구(硏究))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.1-38
    • /
    • 1972
  • This study, designed to establish a classification system of paddy soils and suitability groups on productivity and management of paddy land based on soil characteristics, has been made for the paddy soils on the Gimje-Mangyeong plains. The morphological, physical and chemical properties of the 15 paddy soil series found on these plains are briefly as follows: Ten soil series (Baeggu, Bongnam, Buyong, Gimje, Gongdeog, Honam, Jeonbug, Jisan, Mangyeong and Suam) have a B horizon (cambic B), two soil series (Geugrag and Hwadong) have a Bt horizon (argillic B), and three soil series (Gwanghwal, Hwagye and Sindab) have no B or Bt horizons. Uniquely, both the Bongnam and Gongdeog series contain a muck layer in the lower part of subsoil. Four soil series (Baeggu, Gongdeog, Gwanghwal and Sindab) generally are bluish gray and dark gray, and eight soil series (Bongnam, Buyong, Gimje, Honam, Jeonbug, Jisan, Mangyeong and Suam) are either gray or grayish brown. Three soil series (Geugrag, Hwadong and Hwagye), however, are partially gleyed in the surface and subsurface, but have a yellowish brown to brown subsoil or substrata. Seven soil series (Bongnam, Buyong, Geugrag, Gimje, Gongdeog, Honam and Hwadong) are of fine clayey texture, three soil series (Baeggu, Jeonbug and Jisan) belong to fine loamy and fine silty, three soil series (Gwanghwal, Mangyeong and Suam) to coarse loamy and coarse silty, and two soil series (Hwagye and Sindab) to sandy and sandy skeletal texture classes. The carbon content of the surface soil ranges from 0.29 to 2.18 percent, mostly 1.0 to 2.0 percent. The total nitrogen content of the surface soil ranges from 0.03 to 0.25 percent, showing a tendency to decrease irregularly with depth. The C/N ratio in the surface soil ranges from 4.6 to 15.5, dominantly from 8 to 10. The C/N ratio in the subsoil and substrata, however, has a wide range from 3.0 to 20.25. The soil reaction ranges from 4.5 to 8.0. All soil series except the Gwanghwal and Mangyeong series belong to the acid reaction class. The cation exchange cpacity in the surface soil ranges from 5 to 13 milliequivalents per 100 grams of soil, and in all the subsoil and substrata except those of a sandy texture, from 10 to 20 milliequivalents per 100 grams of soil. The base saturation of the soil series except Baeggu and Gongdeog is more than 60 percent. The active iron content of the surface soil ranges from 0.45 to 1.81 ppm, easily-reduceable manganese from 15 to 148 ppm, and available silica from 36 to 366 ppm. The iron and manganese are generally accumulated in a similar position (10 to 70cm. depth), and silica occurs in the same horizon with that of iron and manganese, or in the deeper horizons in the soil profile. The properties of each soil series extending from the sea shore towards the continental plains change with distance and they are related with distance (x) as follows: y(surface soil, clay content) = $$-0.2491x^2+6.0388x-1.1251$$ y(subsoil or subsurface soil, clay content) = $$-0.31646x^2+7.84818x-2.50008$$ y(surface soil, organic carbon content) = $$-0.0089x^2+0.2192x+0.1366$$ y(subsoil or subsurface soil, pH) = $$-0.0178x^2-0.04534x+8.3531$$ Soil profile development, soil color, depositional and organic layers, soil texture and soil reaction etc. are thought to be the major items that should be considered in a paddy soil classification. It was found that most of the soils belonging to the moderately well, somewhat poorly and poorly drained fine and medium textured soils and moderately deep fine textured soils over coarse materials, produce higher paddy yields in excess of 3,750 kg/ha. and most of the soils belonging to the coarse textured soils, well drained fine textured soils, moderately deep medium textured soils over coarse materials and saline soils, produce yields less than 3,750kg/ha. Soil texture of the profile, available soil depth, salinity and gleying of the surface and subsurface soils etc. seem to be the major factors determining rice yields, and these factors are considered when establishing suitability groups for paddy land. The great group, group, subgroup, family and series are proposed for the classification categories of paddy soils. The soil series is the basic category of the classification. The argillic horizon (Bt horizon) and cambic horizon (B horizon) are proposed as two diagnostic horizons of great group level for the determination of the morphological properties of soils in the classification. The specific soil characteristics considered in the group and subgroup levels are soil color of the profile (bluish gray, gray or yellowish brown), salinity (salic), depositonal (fluvic) and muck layers (mucky), and gleying of surface and subsurface soils (gleyic). The family levels are classified on the basis of soil reaction, soil texture and gravel content of the profile. The definitions are given on each classification category, diagnostic horizons and specific soil characteristics respectively. The soils on these plains are classified in eight subgroups and examined under the existing classification system. Further, the suitability group, can be divided into two major categories, suitability class and subclass. The soils within a suitability class are similar in potential productivity and limitation on use and management. Class 1 through 4 are distinguished from each other by combination of soil characteristics. Subclasses are divided from classes that have the same kind of dominant limitations such as slope(e), wettness(w), sandy(s), gravels(g), salinity(t) and non-gleying of the surface and subsurface soils(n). The above suitability classes and subclasses are examined, and the definitions are given. Seven subclasses are found on these plains for paddy soils. The classification and suitability group of 15 paddy soil series on the Gimje-Mangyeong plains may now be tabulated as follows.

  • PDF