• Title/Summary/Keyword: Acid stress

Search Result 1,636, Processing Time 0.025 seconds

Effects of Acid Treatments on Chlorophyll, Carotenoid and Anthocyanin Contents in Arabidopsis (산성처리가 애기장대의 엽록소, 카로티노이드, 안토시아닌 등의 색소 함량에 미치는 영향)

  • Im, Kyung-Hoan
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.81-85
    • /
    • 2010
  • Arabidopsis seedlings subjected to low pH stress in the range of pH 5.6-4.0 did not show significant retardations in root and shoot growths. Treatment of pH 3.5-2.5 resulted in significant reductions in root and shoot length, especially in roots. Chlorophyll contents in seedlings increased during acid treatment of pH 5.6-4.0, but decreased by stronger acid treatment of pH 4.0 and lower pHs. Total carotenoid contents showed similar trend to chlorophyll contents by increasing during pH 5.6-3.5 treatments and decreasing by pH 3.0-2.5. Anthocyanin contents increased under acid stress of pH 5.6-3.0 and showed great reduction at pH 2.5. The ratios of carotenoids/chlorophylls and anthocyanins/chlorophylls increased by acid stress treatments. That indicates plants try to adjust physiologically to acid stress and protect chlorophylls by increasing carotenoid and anthocyanin contents. However, different responses of chlorophylls and anthocyanins to acid stress indicate both pigments play different roles in protecting plant from acid stress.

Effects of gamma aminobutyric acid on performance, blood cell of broiler subjected to multi-stress environments

  • Keun-tae, Park;Mihyang, Oh;Younghye, Joo;Jong-Kwon, Han
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.248-255
    • /
    • 2023
  • Objective: Stress factors such as high temperatures, overcrowding, and diurnal temperature range exert profound negative effects on weight gain and productivity of broiler chickens. The potential of gamma aminobutyric acid (GABA) as an excitatory neurotransmitter was evaluated under various stress conditions in this study. Methods: The experiment was conducted under four different environmental conditions: normal, high temperature, overcrowded, and in an overcrowded-diurnal temperature range. The experimental groups were divided into (-) control group without stress, (+) control group with stress, and G50 group (GABA 50 mg/kg) with stress. Weight gain, feed intake, and feed conversion ratio were measured, and stress reduction was evaluated through hematologic analysis. Results: The effects of GABA on broilers in four experimental treatments were evaluated. GABA treated responded to environmental stress and improved productivity in all the experimental treatments. The magnitude of stress observed was highest at high temperature, followed by the overcrowded environment, and was least for the overcrowded-diurnal temperature range. Conclusion: Various stress factors in livestock rearing environment can reduce productivity and increase disease incidence and mortality rate. To address these challenges, GABA, an inhibitory neurotransmitter, was shown to reduce stress caused due to various environmental conditions and improve productivity.

Behavior of Stress Corrosion Cracking in Structural Steel under Acid Fog Environment (산성안개하에서 기계·구조용강의 응력부식균열 거동)

  • Lim, Yong Ho;Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.291-295
    • /
    • 1997
  • The tests of stress corrosion cracking in structural carbon steel were carried out under the conditions of acid fog and general water. As the result of measurement SCC rupture time under acid fog was observed to be much shorter than that of general water at the same stress level. Therefore, acid fog drops the SCC strength in structural carbon steel due to strong corrosion. In the SCC process by acid fog, crack initiation was caused by pit corrosion and local stress concentration, and distinctive feature of crack growth shows branching since crack grows to the corrosion direction. Moreover, corrosion products were observed by clevage corrosion on the crack surfaces.

  • PDF

The Protective Effects of Protocatechuic Acid from Momordica charantia against Oxidative Stress in Neuronal Cells (여주 활성 물질 Protocatechuic Acid의 신경세포의 산화적 스트레스에 대한 개선 효과)

  • Choi, Jung Ran;Choi, Ji Myung;Lee, Sanghyun;Cho, Kye Man;Cho, Eun Ju;Kim, Hyun Young
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.11-16
    • /
    • 2014
  • Protocatechuic acid is an active phenolic acid compound from Momordica charantia. In this study, we investigated the protective effect of protocatechuic acid against oxidative stress under cellular system using C6 glial cell. The oxidative stress was induced by hydrogen peroxide ($H_2O_2$) and amyloid beta 25-35 ($A{\beta}_{25-35}$), and they caused the decrease of cell viability and overproduction of reactive oxygen species (ROS). However, the treatment of protocatechuic acid significantly elevated the decreased cell viability and inhibited the overproduction of ROS by $H_2O_2$. In addition, protocatechuic acid significantly recovered the cellular damage induced by $A{\beta}_{25-35}$. In particular, protocatechuic acid at the concentration $10{\mu}g/mL$ decreased the elevated ROS level to normal level. These results indicate that protocatechuic acid may have neuroprotective effect through attenuating oxidative stress.

Protective Activity of Fucoidan and Alginic Acid against Free Radical-Induced Oxidative Stress under in Vitro and Cellular System

  • So, Mi-Jung;Kim, Boh-Kyung;Choi, Mi-Jin;Park, Kun-Young;Rhee, Sook-Hee;Cho, Eun-Ju
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.4
    • /
    • pp.191-196
    • /
    • 2007
  • We investigated radical scavenging effects and protective activities of fucoidan and alginic acid, active polysaccharide components from brown seaweeds, against peroxyl radical-induced oxidative stress under in vitro and cellular system. Fucoidan exerted strong radical scavenging effects against nitric oxide (NO) and superoxide anion $(O_2)$. On the other hand, alginic acid did not show inhibitory activity against NO and relatively weak $O_2{^-}$ scavenging effect. Additionally, alginic acid exhibited higher hydroxyl scavenging activity than fucoidan. Both fucoidan and alginic acid significantly enhanced cell viability against oxidative stress induced by 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH). At $1000{\mu}g/mL$ concentration of fucoidan and alginic acid, the viability was increased from 16.4% to 85.9% and 67.7%, respectively. In addition, fucoidan and alginic acid ameliorated the lipid peroxidation in LLC-PK1 cell induced by AAPH in a dose-dependent manner. In particular, fucoidan showed stronger inhibitory effect than alginic acid in the cellular system. The present study suggests that fucoidan and alginic acid may be promising antioxidants against oxidative stress induced by free radicals.

Cooperative Interaction between Acid and Copper Resistance in Escherichia coli

  • Kim, Yeeun;Lee, Seohyeon;Park, Kyungah;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.602-611
    • /
    • 2022
  • The persistence of pathogenic Escherichia coli under acidic conditions poses a serious risk to food safety, especially in acidic foods such as kimchi. To identify the bacterial factors required for acid resistance, transcriptomic analysis was conducted on an acid-resistant enterotoxigenic E. coli strain and the genes with significant changes in their expression under acidic pH were selected as putative resistance factors against acid stress. These genes included those associated with a glutamate-dependent acid resistance (GDAR) system and copper resistance. E. coli strains lacking GadA, GadB, or YbaST, the components of the GDAR system, exhibited significantly attenuated growth and survival under acidic stress conditions. Accordantly, the inhibition of the GDAR system by 3-mercaptopropionic acid and aminooxyacetic acid abolished bacterial adaptation and survival under acidic conditions, indicating the indispensable role of a GDAR system in acid resistance. Intriguingly, the lack of cueR encoding a transcriptional regulator for copper resistance genes markedly impaired bacterial resistance to acid stress as well as copper. Conversely, the absence of YbaST severely compromised bacterial resistance against copper, suggesting an interplay between acid and copper resistance. These results suggest that a GDAR system can be a promising target for developing control measures to prevent E. coli resistance to acid and copper treatments.

Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice

  • Hemmati, Ali Asghar;Alboghobeish, Soheila;Ahangarpour, Akram
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.257-267
    • /
    • 2018
  • The present study aimed to evaluate the cinnamic acid effect on memory impairment, oxidative stress, and cholinergic dysfunction in streptozotocin (STZ)-induced diabetic model in mice. In this experimental study, 48 male Naval Medical Research Institute (NMRI) mice (30-35 g) were chosen and were randomly divided into six groups: control, cinnamic acid (20 mg/kg day, i.p.), diabetic, and cinnamic acid-treated diabetic (10, 20 and 40 mg/kg day, i.p.). Memory was impaired by administering an intraperitoneal STZ injection of 50 mg/kg. Cinnamic acid was injected for 40 days starting from the 21st day after confirming STZ-induced dementia to observe its therapeutic effect. Memory function was assessed using cross-arm maze, morris water maze and passive avoidance test. After the administration, biochemical parameters of oxidative stress and cholinergic function were estimated in the brain. Present data indicated that inducing STZ caused significant memory impairment, whereas administration of cinnamic acid caused significant and dose-dependent memory improvement. Assessment of brain homogenates indicated cholinergic dysfunction, increase in lipid peroxidation and reactive oxygen species (ROS) levels, and decrease in glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities in the diabetic group compared to the control animals, whereas cinnamic acid administration ameliorated these indices in the diabetic mice. The present study demonstrated that cinnamic acid improves memory by reducing the oxidative stress and cholinergic dysfunction in the brain of diabetic mice.

Histidine (His83) is Essential for Heat Shock Factor 1 (HSF1) Activation in Protecting against Acid pH Stress

  • Lu, Ming;Chang, Ziwei;Park, Jang-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3405-3409
    • /
    • 2013
  • The activation of heat shock factor 1 (HSF1) can be induced by the changes in environmental pH, but the mechanism of HSF1 activation by acidification is not completely understood. This paper reports that a low pH (pH~6.0) can trigger human HSF1 activation. Considering the involvement of the imidazole group of histidine residues under acid pH stress, an in vitro EMSA experiment, Trp-fluorescence spectroscopy, and protein structural analysis showed that the residue, His83, is the essential for pH-dependent human HSF1-activation. To determine the roles of His83 in the HSF1-mediated stress response affecting the cellular acid resistance, mouse embryo fibroblasts with normal wild-type or mutant mouse HSF1 expression were preconditioned by heating or pH stress. The results suggest that His83 is essential for HSF1 activation or the HSF1-mediated transcription of heat shock proteins, in protecting cells from acid pH stress.

Protective effects of 5-aminolevulinic acid on heat stress in bovine mammary epithelial cells

  • Islam, Md Aminul;Noguchi, Yoko;Taniguchi, Shin;Yonekura, Shinichi
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1006-1013
    • /
    • 2021
  • Objective: Cells have increased susceptibility to activation of apoptosis when suffering heat stress (HS). An effective supplementation strategy to mimic heat-induced apoptosis of bovine mammary epithelial cells (MECs) is necessary to maintain optimal milk production. This study aimed to investigate possible protective effects of the anti-apoptotic activity of 5-aminolevulinic acid (5-ALA) against HS-induced damage of bovine MECs. Methods: Bovine MECs were pretreated with or without 5-ALA at concentrations of 10, 100, and 500 µM for 24 h followed by HS (42.5℃ for 24 h and 48 h). Cell viability was measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Real-time quantitative polymerase chain reaction and Western blotting were used to explore the regulation of genes associated with apoptosis, oxidative stress, and endoplasmic reticulum (ER) stress genes. Results: We found that 5-ALA induces cytoprotection via inhibition of apoptosis markers after HS-induced damage. Pretreatment of bovine MECs with 5-ALA resulted in dramatic upregulation of mRNA for nuclear factor erythroid-derived 2-like factor 2, heme oxygenase-1, and NAD(P)H quinone oxidoreductase 1, all of which are antioxidant stress genes. Moreover, 5-ALA pretreatment significantly suppressed HS-induced ER stress-associated markers, glucose-regulated protein 78, and C/EBP homologous protein expression levels. Conclusion: 5-ALA can ameliorate the ER stress in heat stressed bovine MEC via enhancing the expression of antioxidant gene.

Proteomic Evaluation of Cellular Responses of Saccharomyces cerevisiae to Formic Acid Stress

  • Lee, Sung-Eun;Park, Byeoung-Soo;Yoon, Jeong-Jun
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.302-309
    • /
    • 2010
  • Formic acid is a representative carboxylic acid that inhibits bacterial cell growth, and thus it is generally considered to constitute an obstacle to the reuse of renewable biomass. In this study, Saccharomyces cerevisiae was used to elucidate changes in protein levels in response to formic acid. Fifty-seven differentially expressed proteins in response to formic acid toxicity in S. cerevisiae were identified by 1D-PAGE and nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analyses. Among the 28 proteins increased in expression, four were involved in the MAP kinase signal transduction pathway and one in the oxidative stress-induced pathway. A dramatic increase was observed in the number of ion transporters related to maintenance of acid-base balance. Regarding the 29 proteins decreased in expression, they were found to participate in transcription during cell division. Heat shock protein 70, glutathione reductase, and cytochrome c oxidase were measured by LC-MS/MS analysis. Taken together, the inhibitory action of formic acid on S. cerevisiae cells might disrupt the acidbase balance across the cell membrane and generate oxidative stress, leading to repressed cell division and death. S. cerevisiae also induced expression of ion transporters, which may be required to maintain the acid-base balance when yeast cells are exposed to high concentrations of formic acid in growth medium.