• 제목/요약/키워드: Acid stress

Search Result 1,658, Processing Time 0.034 seconds

Effects of Rice Embryo and Embryo Jelly with Black Rice Bran Pigment on Lipid Metabolism and Antioxidant Enzyme Activity in High Cholesterol-Fed Rats (쌀 배아와 흑미 미강 색소 첨가 배아젤리가 고콜레스테를 식이 흰쥐의 지질대사와 항산화효소 활성에 미치는 영향)

  • Cho, Min-Kyung;Kim, Mi-Hyun;Kang, Mi-Young
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.200-206
    • /
    • 2008
  • We investigated the effect of rice embryo and embryo jelly with black rice bran pigment on lipid metabolism and antioxidant activity. Thirty 4-week-old male Sprague-Dawley rats were fed high cholesterol diets supplemented with 15% rice embryo and 25% embryo jelly added black rice bran pigment, respectively, for 6 weeks. Plasma and hepatic lipid profile, lipid peroxidation, and the activity of antioxidant scavenger enzymes in liver were examined. Supplementation with rice embryo and embryo jelly had no effect on food intakes in high cholesterol-fed rats. The plasma triglyceride concentration was not significantly different among the groups. Supplementation with rice embryo and embryo jelly resulted in lower plasma and hepatic total cholesterol (TC) concentration and high-density lipoprotein-cholesterol (HDL-C)/TC ratio and atherogenic index compared to the control group, while the plasma HDL-C concentration tended to elevated. Rice embryo and embryo jelly tended to lower plasma and hepatic levels of thiobarbituric acid reactive substances than the control group. Moreover, hepatic antioxidant enzyme activities, including superoxide dismutase and glutathione peroxidase, were significantly higher in the rice embryo and embryo jelly groups. In conclusion, rice embryo and embryo jelly was very effective in improving the lipid metabolism and reducing oxidative stress by up-regulating the hepatic antioxidant enzymes in high cholesterol-fed rats.

Induction of Heat Shock Protein 70 Inhibits Tumor Necrosis $Factor{\alpha}-induced$ Lipid Peroxidation in Rat Mesangial Cells (Heat Shock Protein 70이 흰쥐 배양 혈관간 세포에서 관찰되는 $TNF{\alpha}$에 의한 지질과산화에 미치는 보호 효과)

  • Ha, Hun-Joo;Park, Young-Mee;Ahn, Young-Soo;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.323-331
    • /
    • 1995
  • Monocyte/macrophage infiltration is the well known initial features associated with the development of glomerular disease including non-immune mediated nephropathy. Tumor necrosis factor ${\alpha}(TNF{\alpha})$, a cytokine produced primarily by monocyte/macrophage, exhibits similar effects as observed at the initial stages and during the progression of glomerular injury. Because the mesangial cells are target cells for glomerular injury, the present study examined the effect of $TNF{\alpha}$ on glomerular mesangial cell membrane lipid peroxidation as an index of cytotoxicity attributing to $TNF{\alpha}$. Primary culture of rat mesangial cell was established by incubation of glomeruli isolated from male Sprague-Dawley rat kidneys utilizing a standard sieving method. The levels of lipid peroxides in the mesangial cells were quantitated by malondialdehyde- thiobarbituric acid adduct formation. During an 8 hour incubation at $37^{\circ}C$, $TNF{\alpha}$ at 10 to 10,000 units/ml increased the levels of lipid peroxides dose dependently. Western blot analysis demonstrated that a short thermal stress induced heat shock response and the synthesis of heat shock protein 70(hsp70) in this mesangial cells. Further, this induction of hsp 70 prevented increase of lipid peroxides in the mesangial cells exposed to $TNF{\alpha}$. These data suggest that $TNF{\alpha}-induced$ lipid peroxidation in the mesangial cells may have pathophysiological relevance to glomerular injury and prior induction of heat shock response may play a role in the cellular resistance against $TNF{\alpha}-induced$ glomerular injury.

  • PDF

Antioxidant and Anti-inflammatory Effects of Ethanol Extracts from Perilla frutescens (들깨(Perilla frutescens) 새싹 추출물의 항산화 및 항염 효과)

  • Jeong, Seung-Il;Kim, Hyeon Soo;Jeon, In Hwa;Kang, Hyun Ju;Mok, Ji Ye;Cheon, Chun Jin;Yu, Hyeon Hee;Jang, Seon Il
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.87-93
    • /
    • 2014
  • We investigated the effects of an ethanol extract from Perilla frutescens sprouts (PFSE) as an antioxidant, and its effects on edema and inflammation in RAW 264.7 cells and HMC-1 cells. The antioxidant activities (DPPH and ABTS radical scavenging) of PFSE were similar to those of butylated hydroxytoluene (BHT) and (${\pm}$)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox). We also investigated the anti-inflammatory effects of PFSE on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and HMC-1 cells stimulated with phorbol 12-myristate 13-acetate (PMA) with the calcium ionophore A23187. TNF-${\alpha}$ and IL-$1{\beta}$ production, which had been increased by treatment with LPS or PMA plus A23187, were significantly inhibited by PFSE in a dose-dependent manner. Furthermore, PFSE significantly reduced the xylene-induced ear edema and the carrageenan-induced paw edema of ICR mice in a dose-dependent manner. The effects of PFSE (200 mg/kg) in reducing ear and paw edema were similar to those of aspirin (50 mg/kg). These results suggest that PFSE can be potentially used as a medicine for treating oxidative stress, an edematous and inflammatory disease.

Radioprotective effect of naringin and naringenin against cellular damage and oxidative stress of γ-irradiated mice (감마선을 조사한 마우스의 세포 손상과 산화적 스트레스에 대한 나린진과 나린제닌의 방사선방호 효과)

  • Kang, Jung Ae;Kim, Hye Rim;Yoon, Seon Hye;Jang, Beom-Su;Choi, Dae Seong;Park, Sang Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.659-667
    • /
    • 2017
  • The present study was designed to evaluate the antioxidant activity and radioprotective effects of Naringin and Naringenin in ${\gamma}$-irradiated mice. The antioxidant activity of Naringin and Naringenin was evaluated by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) assays. Healthy female BALB/c mice were administered Naringin and Naringenin orally ($90{\mu}M/dose$ and $180{\mu}M/dose$) for 7 consecutive days prior to ${\gamma}$-irradiation (6 Gy). Naringenin displayed a much higher antioxidant activity in ABTS and FRAP than naringin. ${\gamma}$-irradiation resulted in cellular damage with decreased spleen and thymus indices and white blood cells (WBC) count. Additionally, ${\gamma}$-irradiation significantly increased lipid peroxidation and decreased the levels of antioxidant enzymes and glutathione (GSH) in the liver tissue. Strikingly, prior administration of Naringenin resulted in considerable prevention of these symptoms. Protection against ${\gamma}$-irradiation-induced cellular damage by Naringenin is likely due to its higher its antioxidant activity. Together, these results confirm that Naringenin is a potent antioxidant and radioprotector.

Antioxidant and neuroprotective effects of crude polysaccharide fractions from Cudrania tricuspidata fruits (꾸지뽕 열매 조다당류 분획물의 산화방지 활성 및 신경세포 보호 효과)

  • Kim, Yi-Eun;Cho, Eun-Ji;Byun, Eui-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.543-548
    • /
    • 2018
  • The current study examined antioxidant and neuronal cell protective effects of the crude polysaccharide fraction in Cudrania tricuspidata fruits (CTP). The radical scavenging activities of (1,1-diphenyl-picrylhydrazyl and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)) and reducing power and FRAP of CTP were increased dose-dependently. In addition, the expression of neuroprotective effect of CTP was tested in HT22 mouse hippocampal cells. CTP treatment exhibited non cytotoxicity at dose levels below $500{\mu}g/mL$. Within this optimal concentration range, CTP treatment significantly increased cell viability in $H_2O_2-treated$ HT22 cells. Furthermore, CTP treatment increased superoxide dismutase (SOD) activity and decreased malonaldehyde (MDA) levels in HT22 cells. Therefore, these results indicate that the crude polysaccharide fraction from Cudrania tricuspidata fruits (CTP) possesses antioxidant activities and displays therapeutic potential as a useful source material in the development of brain disorder treatments targeting oxidative stress in neuronal cells.

Curcumin Attenuates Hydrogen Peroxide Induced Oxidative Stress on Semen Characteristics during In Vitro Storage of Boar Semen

  • Jang, Hyun-Yong;Kim, Young-Han;Cheong, Hee-Tae;Kim, Jong-Taek;Park, In-Chul;Park, Choon-Keun;Yang, Boo-Keun
    • Reproductive and Developmental Biology
    • /
    • v.33 no.2
    • /
    • pp.99-105
    • /
    • 2009
  • Curcumin is a major active component of the food flovour tumeric. It has been used for the treatment of many diseases such as inflammatory and infectious diseases, cancer and other disease due to its antioxidant properties. Curcumin is a powerful scavenger of many free radicals such as superoxide anion, hydroxyl radical and nitric oxide. The objective of this study was to investigate the antioxidative effects of curcumin against hydrogen peroxide on semen quality during in vitro storage of boar semen. The sperm treated with different concentration of curcumin (1, 5 and 10 ${\mu}M$) in the presence or absence of hydrogen peroxide (250 ${\mu}M\;H_2O_2$) were incubated for 3, 6 and 9 hr at $37^{\circ}C$ and analyzed sperm characteristics such as motility, membrane integrity (MI), lipid peroxidation (LPO), reactive oxygen species (ROS) and DNA fragmentation (DF). The sperm motility and MI in $H_2O_2$ treated group ($47.8%{\pm}6.8$ and $24.8%{\pm}2.2$) were significantly decreased when compare to curcumin treated group ($79.8%{\pm}2.7$ and $34.6%{\pm}1.0$, respectively) irrespective of incubation periods(p<0.05). The LPO of spermatozoal plasma membrane was measured by thiobarbituric acid (TBA) reactions for malondialdehyde (MDA), MDA level in control ($11.6{\pm}0.6\;nmol/L{\times}10^6$) and curcumin groups ($10.7{\pm}0.3\;nmol/L{\times}10^6$) were lower than those of curcumin plus $H_2O_2$ ($17.1{\pm}0.8\;nmol/L{\times}10^6$) or $H_2O_2$ group ($22.5{\pm}1.9\;nmol/L{\times}10^6$) from 3 to 9 hr incubation periods. The DF by sperm chromatin dispersion (SCD) test and ROS production measured by 2',7'-dichlorofluorescein (DCF) fluorescence intensity were no significantly difference through all experimental groups (p>0.05). Correlation among evaluation methods for sperm quality, motility vs MI and DF vs ROS was positively correlated while motility vs DF and ROS vs LPO were negatively correlated in all treatment groups. These results demonstrate that curcumin can effectively improve the sperm quality during in vitro storage of boar semen through its hydrogen peroxide scavenging mechanism as an antioxidant.

Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus

  • Lee, Young-Min;Gweon, Oh-Cheon;Seo, Yeong-Ju;Im, Ji-Eun;Kang, Min-Jung;Kim, Myo-Jeong;Kim, Jung-In
    • Nutrition Research and Practice
    • /
    • v.3 no.2
    • /
    • pp.156-161
    • /
    • 2009
  • Hyperglycemia in the diabetic state increases oxidative stress and antioxidant therapy can be strongly correlated with decreased risks for diabetic complications. The purpose of this study is to determine antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes. The antioxidant activity of garlic and aged black garlic was measured as the activity in scavenging free radicals by the trolox equivalent antioxidant capacity (TEAC) assay. Three week-old db/db mice were fed AIN-93G diet or diet containing 5% freeze-dried garlic or aged black garlic for 7 weeks after 1 week of adaptation. Hepatic levels of lipid peroxides and activities of antioxidant enzymes were measured. TEAC values of garlic and aged black garlic were $13.3{\pm}0.5$ and $59.2{\pm}0.8{\mu}mol/g$ wet weight, respectively. Consumption of aged black garlic significantly decreased hepatic thiobarbituric acid reactive substances (TBARS) level compared with the garlic group which showed lower TBARS level than control group (p<0.05). Activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of garlic and aged black garlic group were significantly elevated compared to the control group. Catalase (CAT) activity of aged black garlic group was increased compared with the control group. These results show that aged black garlic exerts stronger antioxidant activity than garlic in vitro and in vivo, suggesting garlic and aged black garlic, to a greater extent, could be useful in preventing diabetic complications.

Interaction Between Plants and Rhizobacteria in Phytoremediation of Heavy Metal- Contaminated Soil (중금속 오염 토양의 식물상 복원에 있어 식물과 근권세균의 상호작용)

  • Koo So-Yeon;Cho Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.83-93
    • /
    • 2006
  • In heavily industrialized areas, soil sites are contaminated with high concentrations of heavy metals. These pollutants are highly accumulated to the human body through the food web and cause serious diseases. To remove heavy metals from the soil, a potential strategy is the environmental friendly and cost effective phytoremediation. For the enhancement of remediation efficiency, the symbiotic interaction between the plant and plant growth-promoting rhizobacteria (PGPR) has been attended. In this review, the interaction of the plant and PGPR in the heavy metal-contaminated soil has been reviewed. The physicochemical and biological characteristics of the rhlzosphere can influence directly or indirectly on the biomass, activity and population structure of the rhizobacteria. The root exudates are offered to the soil microbes as useful carbon sources and growth factors, so the growth and metabolism of rhizobacteria can be promoted. PGPR have many roles to lower the level of growth-inhibiting stress ethylene within the plant, and also to provide iron and phosphorus from the soil to plant, and to produce phytohormone such as indole acetic acid. The plant with PGPR can grow better in the heavy metal contaminated soil. Therefore higher efficiency of the phytoremediation will be expected by the application of the PGPR.

Effects of Antioxidant Nutrient Supplementation on the Lipid Peroxidation and Antioxidative Enzyme Activities in Patients with Coronary Heart Disease

  • Joung, Hyojee;Chun, Byung Yeol;Choi, Young Sun;Kim, Sueun;Park, Wee Hyun;Jun, Jae Eun;Chae, Shung Chull;Song, Kyung Eun;Cho, Sung Hee;Oh, Hee Sook
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.1
    • /
    • pp.51-56
    • /
    • 2001
  • This study was carried out to evaluate whether antioxidant nutrient suppplementation with $\alpha$-tocopherol, vitamin C, $\beta$-carotene, and selenium reduces the lipid peroxide levels and increases the antioxidative enzyme activities in patients with coronary hart disease. Eighty nine patients participated in a randomized, double-blind, placebo-controlled trial. The antioxidant group (45 patients) was given daily doses of $\alpha$-tocopherol (400 IU), vitamin C (50 mg), $\beta$-carotene (15 mg), and selenium (50 $\mu\textrm{g}$) and forty four patients received a placebo. Thirty eight subjects (84.4%) of the antioxidant group and thirty nine subjects (88.6%) of the placebo group completed the three-month supplementation. Serum levels of tocopherol, vitamin C and $\beta$-carotene significantly increased in the antioxidant group compared with the baseline (p<0.05). Thiobarbituric acid-reactive substances(TBARS) decreased significantly (0.6 nmol MDA/mL) in the antioxidant group compared with that (0.09 nmol MDA/mL) in the placebo group (p=0.03). However, antioxidant supplementation did not affect the level of oxidized-LDL measured as autoantibodies against oxidized-LDL. The superoxide dimutase activity in red blood cells increased in the antioxidant group compared with the baseline (p<0.05). However, glutathione peroxidase activities did not change after supplementation in both groups, and catalase activity significantly decreased in the placebo group (p<0.05). These results suggest that antioxidant supplementation for 3 months with $\alpha$-tocopherol, vitamin C, $\beta$-carotene and selenium in patients with coronary heat disease may be partially protective against oxidative stress.

  • PDF

Hypertonicity Down-regulates the $1{\alpha},25(OH)_2$ Vitamin $D_3$-induced Osteoclastogenesis Via the Modulation of RANKL Expression in Osteoblast

  • Jeong, Hyun-Joo;Yushun, Tian;Kim, Bo-Hye;Nam, Mi-Young;Lee, Hyun-A;Yoo, Yun-Jung;Seo, Jeong-Taeg;Shin, Dong-Min;Ohk, Seung-Ho;Lee, Syng-Ill
    • International Journal of Oral Biology
    • /
    • v.30 no.1
    • /
    • pp.23-30
    • /
    • 2005
  • Bone remodeling is a process controlled by the action of two major bone cells; the bone forming osteoblast and the bone resorbing osteoclast. In the process of osteoclastogenesis, stromal cells and osteoblast produce RANKL, OPG, and M-CSF, which in turn regulate the osteoclastogenesis. During the bone resorption by activated osteoclasts, extracellular $Ca^{2+}/{PO_4}^{2-}$ concentration and degraded organic materials goes up, providing the hypertonic microenvironment. In this study, we tested the effects of hypertonicity due to the degraded organic materials on osteoclastogenesis in co-culture system. It was examined the cellular response of osteoblastic cell in terms of osteoclastogenesis by applying the sucrose, and mannitol, as a substitute of degraded organic materials to co-culture system. Apart from the sucrose, mannitol, and NaCl was tested to be compared to the effect of organic osmotic particles. The addition of sucrose and mannitol (25, 50, 100, 150, or 200 mM) to co-culture medium inhibited the number of tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells induced by 10 nM $1{\alpha},25(OH)_2vitaminD_3$ ($1{\alpha},25(OH)_2D_3$). However, NaCl did exert harmful effect upon the cells in this co-culture system, which is attributed to DNA damage in high concentration of NaCl. To further investigate the mechanism by which hypertonicity inhibits $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis, the mRNA expressions of receptor activator of nuclear factor (NF)-kB ligand (RANKL) and osteoprotegerin (OPG) were monitored by RT-PCR. In the presence of sucrose (50 mM), RANKL mRNA expression was decreased in a dose-dependent manner, while the change in OPG and M-CSF mRNA were not occurred in significantly. The RANKL mRNA expression was inhibited for 48 hours in the presence of sucrose (50 mM), but such a decrement recovered after 72 hours. However, there were no considerable changes in the expression of OPG and M-CSF mRNA. Conclusively, these findings strongly suggest that hypertonic stress down-regulates $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis via RANKL signal pathway in osteoblastic cell, and may playa pivotal role as a regulator that modulates osteoclastogenesis.