• 제목/요약/키워드: Acid shock protein

검색결과 96건 처리시간 0.022초

자외선 B 파로 유도된 Hairless Mouse에서 타닌의 피부 독성 억제효과 및 Heat Shock Protein 70의 생성억제 효과 (Inhibitory Effects of Tannic Acid on the Skin Toxicity and Heat Shock Protein Induction by UVB Irradiation in Hairless Mouse)

  • 이세윤;이민경;장동덕;안령미;안형수
    • Toxicological Research
    • /
    • 제13권1_2호
    • /
    • pp.79-86
    • /
    • 1997
  • Inhibitory effects of tannic acid on skin toxicity and heat shock protein induced by UVB were investigated. Tannic acid was administered either topically or orally for 3 days to hairless mice, which were previously irradiated with UVB. UVB was found to cause skin erythema . However, the skin erythema was decreased when tannic acid was administered either topically or orally. The heat shock proteins, Hsp-78 kDa and 70 kDa, were induced by UVB irradiation, but the induction was decreased by treatment of tannic acid in both topically and orally administered groups. The hsp induction was more prominent in orally administered groups than in topically administerd groups. However, the difference between two groups was not statistically significant. The route of administrations, topical and oral, does not affect the activity of tannic acid. In the skin tissue observation, tannic acid regenerated the epithelial cells with 7-9 cell layers which were injured by UVB. In conclusion, tannic acid has an ability to protect against UVB irradiation and regenerate the skin.

  • PDF

SB202190- and SB203580-Sensitive p38 Mitogen-Activated Protein Kinase Positively Regulates Heat Shock- and Amino Acid Analog-Induced Heat Shock Protein Expression

  • Kim, Sun-Hee;Han, Song-Iy;Oh, Su-Young;Seo, Myoung-Suk;Park, Hye-Gyeong;Kang, Ho-Sung
    • 대한의생명과학회지
    • /
    • 제9권2호
    • /
    • pp.59-65
    • /
    • 2003
  • When cells are exposed to proteotoxic stresses such as heat shock, amino acid analogs, and heavy metals, they increase the synthesis of the heat shock proteins (HSPs) by activating the heat shock transcription factor 1 (HSF1), whose activity is controlled via multiple steps including homotrimerization, nuclear translocation, DNA binding, and hyperphosphorylation. Under unstressed conditions, the HSF1 activity is repressed through its constitutive phosphorylation by glycogen synthase kinase 3$\beta$ (GSK3$\beta$), extracellular regulated kinase 1/2 (ERK1/2), and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). However, the protein kinase (s) responsible for HSF1 hyperphosphorylation and activation is not yet identified. In the present study, we observed that profile of p38 mitogen-activated protein kinase (p38MAPK) activation in response to heat shock was very similar to those of HSF1 hyperphosphorylation and nuclear translocation. Therefore, we investigated whether p38MAPK is involved in the heat shock-induced HSF1 activation and HSP expression. Here we show that the p38MAPK inhibitors, SB202190 and SB203580, but not other inhibitors including the MEK1/2 inhibitor PD98059 and the PI3-K inhibitor LY294002 and wortmannin, suppress HSF1 hyperphosphorylation in response to heat shock and L-azetidine 2-carboxylic acid (Azc), but not to heavy metals. Furthermore, heat shock-induced HSF1-DNA binding and HSP72 expression was specifically prevented by the p38MAPK inhibitors, but not by the MEK1/2 inhibitor and the PI3-K inhibitors. These results suggest that SB202190- and SB203580-sensitive p38MAPK may positively regulate HSP gene regulation in response to heat shock and amino acid analogs.

  • PDF

Non-Invasive Environmental Detection using Heat Shock Gene-Green Fluorescent Protein Fusions

  • 차형준
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.355-356
    • /
    • 2000
  • Three 'stress probe' plasmids were constructed and characterized which utilize a green fluorescent protein (CFP) as a non-invasive reporter to elucidate Escherichia coli cellular stress responses in quiescent or 'resting' cells. Facile detection of cellular stress levels was achieved by fusion of three heat shock stress protein promoter elements, those of the heat shock transcription factor ${\sigma}^{32}$, pretense subunit ClpB, and chaperone DnaK, to the reporter gene $gfp_{uv}$. When perturbed by chemical or physical stress (such as heat shock, nutrient (amino acid) limitation, addition of IPTG, acetic acid, ethanol, phenol, antifoam, and salt (osmotic shock), the E. coli cells produced GFPuv which was easily detected from within the cells as emitted green fluorescence. A temporal and amplitudinal mapping of these responses was performed, demonstrating regions where quantitative delineation of cell stress was afforded.

  • PDF

Molecular Chaperonic Function of C-Reactive Protein Induced by Heating in HT-29 Human Colon Carcinoma Cells

  • Lee, Soo-Young;Jung, Hyun-Jung;Kim, Hyun-Soo;Lee, Seung-Chul;Lee, Si-Back;Joe, Jae-Hoon;Kim, You-Mie
    • BMB Reports
    • /
    • 제33권5호
    • /
    • pp.407-411
    • /
    • 2000
  • The effects of heat shock, or all-trans retinoic acid, on the expression of the C-reactive protein mRNA in the HT-29 human colon carcinoma cells, as well as the functional role of the C-reactive protein as a molecular chaperone, were studied. The expression level of the C-reactive protein mRNA in the HT-29 cells was increased time-dependently when exposed to heat-shock, and dose-dependently when treated with all-trans retinoic acid. The activities of transglutaminase C and K in the HT-29 cells were significantly increased when treated with all-trans retinoic acid. The C-reactive protein prevented thermal aggregation of the citrate synthase and stabilized the target enzyme, citrate synthase. The C-reactive protein promoted functional refolding of the urea-denatured citrate synthase up to 40-70%. These results suggest that the C-reactive protein, which is induced in human colon carcinoma cells, when heated or treated with all-trans retinoic acid has in a part functional activity of the molecular chaperone.

  • PDF

84-kDa의 폐렴구균 열충격단백질 ClpL의 Cloning 및 면역특성에 관한 연구 (Cloning and Immunological Characterization of the 84-kDa Heat Shock Protein, ClpL, in Streptococcus pneumoniae)

  • 권혁영;김용환;최혜진;박연진;표석능;이동권
    • Biomolecules & Therapeutics
    • /
    • 제9권2호
    • /
    • pp.79-87
    • /
    • 2001
  • Heat shock proteins serve as chaperone by preventing the aggregation of denatured proteins and promote survival of pathogens in harsh environments. In this study, heat shock gene encoding a 84-kDa (p84) protein, which is one of the three major heat shock proteins in S. pneumoniae, was cloned and characterized. PCR with a forward primer derived from N-terminal amino acid sequence of the p84 and a reverse primer derived from the conserved second ATP-binding region of Clp family was used for amplification of the gene encoding the p84 and subsequently the PCR product was used for sequence determination. Sequence analysis of the p84 gene demonstrated that it is a member of ClpL. The deduced amino acid sequence of pneumococcal ClpL shows homology with other members of the Clp family, and particularly, even in variable leader region, with bovine Clp-like protein and L. lactis ClpL. S. pneumoniae clpL is the smallest clop member (701 amono acids) containing the two conserved ATP-binding regions, and hydrophilic N-terminal variable region of pneu-mococcal Clp ATPase is much shorter than any known Clp ATPases. Histidine tagged ClpL was overexpressed and purified from E. coli. Immunoblot analysis employing antisera raised against pneumococcus p84 demonstrated no cross-reactivity with Clp analog in Eschericha coli, Staphylococcus aureus and human HeLa cells. Preimmunization of mice with ClpL extended mice life partially but did not protect them from death.

  • PDF

생쥐 섬 유아세포에서 70 kDa 고온충격 단백질의 CDNA 클로닝과 염기서열 분석 (Isolation and Characterization of a CDNA Encoding a Protein Homologous to the Mouse 70 kDa Heat Shock Protein)

  • 김창환;정선미최준호
    • 한국동물학회지
    • /
    • 제35권2호
    • /
    • pp.203-210
    • /
    • 1992
  • Hsp70, a 70 kDa protein, is the maior protein expressed when cells are heat-shocked. A cDNA library from mouse ID13 cells was screened with the human hsp70 gene as a probe, and a positive clone was obtained. The positive clone was subcloned into puc19 and the precise restriction was obtained. The CDNA was sequenced by the Sanger's dideoxv termination method. Single open reading frame that codes for a protein of 70 kDa was found. The DNA sequence of the cloned mouse DNA shows great homology (66-90%) with other mouse hsp70 genes and somewhat less homology (50",) with E. coli hsp70 gene (dnak). With the exception of one amino acid, the protein sequence deduced from the CDNA is identical to the mouse that shock cognate protein 70 (hsc70) that is constitutivelv expressed at normal temperature. The result suggests that the cloned CDNA encodes a hsc70 family rather than a heatinducible family.mily.

  • PDF

Evaluation of antioxidant property of heat shock protein 90 from duck muscle

  • Zhang, Muhan;Wang, Daoying;Xu, Xinglian;Xu, Weimin
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.724-733
    • /
    • 2021
  • Objective: The objectives of this study were to investigate the direct antioxidative effect of 90 Kda heat shock protein (Hsp90) obtained from duck muscle. Methods: The interaction of Hsp90 with phospholipids and oxidized phospholipids was studied with surface plasmon resonance (SPR), and their further oxidation in the presence of Hsp90 was evaluated with thiobarbituric acid reactive substances (TBARS) assay. The scavenging effect on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid (ABTS) was measured, and the electron paramagnetic resonance (EPR) spectroscopy in combination with 5-tert-Butoxycarbonyl-5-methyl-1-pyrroline-N-oxide and 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) was utilized to determine the abilities of Hsp90 in scavenging hydroxyl and PTIO radicals. Results: SPR showed Hsp90 could bind with both phospholipids and oxidized phospholipids, and prevent their further oxidation by the TBARS assay. The DPPH and ABTS scavenging activity increased with Hsp90 concentration, and could reach 27% and 20% respectively at the protein concentration of 50 μM. The EPR spectra demonstrated Hsp90 could directly scavenge ·OH and PTIO· radicals. Conclusion: This suggests that Hsp90, a natural antioxidant in meat, may play an important role in cellular defense against oxidative stress, and may have potential use in meat products.

새로운 노화 방지 성분으로서 글루쿠로닉 애씨드의 기능과 화장품 응용 (Application of Glucuronic Acid with New Cosmetic Active Ingredient)

  • 이근수;김진화;이천일;표형배;이공주
    • 대한화장품학회지
    • /
    • 제30권4호
    • /
    • pp.471-477
    • /
    • 2004
  • 피부 세포는 외부의 유해 요소 즉, 스트레스 환경에 노출되었을 때 세포 자신을 보호하기 위하여 다양한 방어 및 복구 체계를 가지고 있는데 그 중 하나가 보호단백질인 열충격단백질 70 kDa의 발현이다 Glucuronic acid를 피부세포에 다양한 농도로 전처리한 다음 유해자극(열, 활성산소)을 주었을 경우, western blottting을 통해 $0.12\%$ 농도에서 세포 내 열충격단백질이 발현됨을 알 수 있었다 그리고 confocal microscopy 및 세포생존율 실험을 이용하여 열 및 활성 산소에 대한 우수한 세포보호 효과를 확인하였다. 또한 마우스 피부를 이용하여 glucuronic acid 및 수중유(O/W)형 에멀젼에 적용하였을 때 경피 흡수 양상을 비교한 결과, glucuronic acid는 빠른 경피흡수거동을 보였다(투과속도 $0.83114 mg/cm^2/h,$ 지연시간 1.2 h, 분배계수 0.114). 에멀젼에서는 투과속도는 $0.04153{\;}{\mu}g/cm^{2}/h,$ 누적투과량은 $1456.25{\;}{\mu}g/cm^{2}$로 감소하였지만 지연시간은 2.48 h으로 증가하였고 지속적인 경피흡수(서방성)를 보였다.

Proline Analogs, L-Azetidine-2-Carboxylic Acid and 3,4-Dehydro-L-Proline, Induce Stress Response in Drosophila Kc Cells

  • Moon, Sung-Joon;Han, Ching-Tack
    • BMB Reports
    • /
    • 제31권2호
    • /
    • pp.201-208
    • /
    • 1998
  • Amino acid analogs, like other inducers of stress response, induce the synthesis of stress proteins in mammalian cells. In this study, Drosophila Kc cells, in which translation is tightly controlled during stress response, was treated with proline analogs, L-azetidine-2-carboxylic acid (AzC) and 3,4-dehydro-L-proline (dh-P). Kc cells exposed to AzC or dh-P induced the synthesis of several proteins which had the same molecular weights as known heat shock proteins. However, in Kc cells, normal protein synthesis still continued in the presence of amino acids analogs unlike in heat-shocked cells. For the induction of stress response, the incorporation of dh-P into the protein was not essential, but the incorporation of AzC was. The stress protein synthesis was regulated mainly at the transcriptional level by AzC, whereas it was regulated by dh-P at the transcription level and possibly posttranscription level. During recovery, the stress protein synthesis stopped sooner in analog-treated cells than in heat-shocked cells even though the accumulated amount of Hsp70 was much less in proline analogstreated cells. It could be concluded that the proline analogs, AzC and dh-P, induced stress response through a different mechanism from heat shock.

  • PDF

Histidine (His83) is Essential for Heat Shock Factor 1 (HSF1) Activation in Protecting against Acid pH Stress

  • Lu, Ming;Chang, Ziwei;Park, Jang-Su
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3405-3409
    • /
    • 2013
  • The activation of heat shock factor 1 (HSF1) can be induced by the changes in environmental pH, but the mechanism of HSF1 activation by acidification is not completely understood. This paper reports that a low pH (pH~6.0) can trigger human HSF1 activation. Considering the involvement of the imidazole group of histidine residues under acid pH stress, an in vitro EMSA experiment, Trp-fluorescence spectroscopy, and protein structural analysis showed that the residue, His83, is the essential for pH-dependent human HSF1-activation. To determine the roles of His83 in the HSF1-mediated stress response affecting the cellular acid resistance, mouse embryo fibroblasts with normal wild-type or mutant mouse HSF1 expression were preconditioned by heating or pH stress. The results suggest that His83 is essential for HSF1 activation or the HSF1-mediated transcription of heat shock proteins, in protecting cells from acid pH stress.