• Title/Summary/Keyword: Acid protease

Search Result 670, Processing Time 0.035 seconds

The Synergy Effects of Mixed Treatment with Tannic Acid and Bacillus thuringiensis subsp. kurstaki KB100 against Spodoptera exigua (Lepidoptera: Noctuidae) (Tannic acid와 Bacillus thuringiensis subsp. kurstaki KB100균주의 혼합처리에 의한 파밤나방 살충활성의 상승효과)

  • Jin, Na-Young;Jung, Sun-Young;Park, Chan;Paek, Seung-Kyoung;Seo, Mi-Ja;Youn, Young-Nam;Yu, Yong-Man
    • Korean journal of applied entomology
    • /
    • v.48 no.4
    • /
    • pp.519-526
    • /
    • 2009
  • Bacillus thuringiensis subsp. kurstaki KB100 isolated from the domestic soil have the most effective activity against the beet armyworm, Spodoptera exigua larva. The tannic acid as protease inhibitor might be increased the efficacy of sublethal concentrations of B. thuringiensis. The tannic acid was identified as a protease inhibitor that could increased the efficacy of sublethal concentrations of B. thuringiensis. Mixture of B. thuringiensis and tannic acid was investigated the mortality of S. exigua larva in the laboratory and field. When B. thuringiensis treated to 2nd larva of S. exigua, mortality was shown 54.4%. However, mixtures of B. thuringiensis with 4 and 40 mM tannic acid were increased mortalities to 2nd larva of S. exigua as 64.0 and 95.5%, respectively. Also, synergy effect of mixture of B. thuringiensis and 40 mM tannic acid was increased the mortality of S. exigua 3rd larva to 93.3%, even though 60.0% mortality with only B. thuringiensis treatment. On the other hand, the mortality of mixture with B. thuringiensis and 80 mM tannic acid was 53.3% lower than B. thuringiensis single treatment. In the welsh onion field, the accumulated mortalities of 3 times replicated with mixture of B. thuringiensis and 40 mM tannic acid were 83.9, 89.4 and 66.8% compare with 61.8, 80.4 and 47.3% as only B. thuringiensis treatment, respectively.

Effect of Serine Protease Inhibitor on Follicular Development in the Rat Ovary (백서에서 Serine Protease 억제제가 난포성숙에 미치는 영향에 대한 연구)

  • Yoon, Byung-Koo;Lee, Jin-Yong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.20 no.1
    • /
    • pp.19-29
    • /
    • 1993
  • Plasminogen activator (PA)-plasmin system in follicular fluid is involved in the process leading to follicular rupture at ovulation. It is well known that PA is closely associated with cellular differentiation and tissue remodeling on evidences from the study of normal and malignant tissues. This study was designed to ascertain a potential role of PA in the ovarian folliculogenesis. Immature Sprague-Dawley rats were injected with pregnant mare serum gonadotropin, followed by injection of serine protease inhibitor (SPI; mixture of 1 mol/L benzamidine and 1 mol/L amino-caproic acid) into the unilateral ovarian bursa. In the control study, mechanical effect of bursal injection and contralateral ovarian effect SPI were ruled out. Total antral follicular areas relative to total ovarian cross-sectional areas was siginificantly lower in SPI-injected ovary than in saline-injected ovary. SPI injection decreased the relative antral follicular area by 33 % respectively. Electron microscopic finding of granulosa cell in the atretic follicle showed the presence of pyknotic nucleus, blurring of neucleolemma, degeneration of mitochondria and dilation of endoplasmic reticulum. After induction of ovulation with hCG, the number of oocytes released was significantly decreased in SPI-injected oviduct than in saline-injected oviduct. From above results, author discussed that PA may play a role not only in ovulation but also in some processes of folliculogenesis.

  • PDF

Isolation of Lactococci Inhibiting Listeria monocytogenes from Kimchi Habitat and Its Identification by 16S rDNA Analysis (김치 서식처에서 Listeria monocytogenes를 억제하는 lactococci의 분리와 16S rDNA분석에 의한 동정)

  • 박은주;한홍의;민봉희
    • The Korean Journal of Ecology
    • /
    • v.22 no.1
    • /
    • pp.45-50
    • /
    • 1999
  • A bacteriocin-producing strain was isolated from kimchi at the early stage of kimchi fermentation. It was identified as Lactococcus lactis by morphological, cultural and physiological characteristics and partial sequence of 16S rDNA. The bacteriocin from isolate had antimicrobial activity against gram positive pathogenic bacteria, such as Listeria monocytogenes. Staphylococcus aureus and several strains of lactic acid bacteria but not to gram negative bacteria, Yersinia enterocolitica. The bacteriocin was sensitive to protease, protease ⅩⅣ, a-chymotrypsin and pepsin but not to lipase, trypsin and lysozyme. The bacteriocin activity was stable at pH 2-11 and temperature of 100 for 10 min. Thus, Listeria monocytogenes could be inhibited by Lactococcus lactis at early stage of fermentation.

  • PDF

Effects of Herbicides on Enzyme Activities in Soil Environment (제초제(除草劑)가 토양환경중(土壤環境中) 효소활성(酵素活性)에 미치는 영향(影響))

  • Kim, Jang-Eok;Hong, Jong-Uck
    • Applied Biological Chemistry
    • /
    • v.31 no.1
    • /
    • pp.79-85
    • /
    • 1988
  • The effects of herbicides on biochemical processes in soil environment were studied by examining the effects of the chemical structure of each herbicides on soil enzyme activities and pesticides residue revealed when soil treated with urea was incubated at $28{\pm}1^{\circ}C$ for 56 days. The inhibition effects of herbicides on soil enzyme activites in soil decreased in the order of urea group>dinoseb>propanil>diphenyl eter group>acid amide group for urease, and dinoseb>urea group>diphenyl ether group>acid amide group for L-glutaminase and protease, dinoseb>diphenyl ether group>urea group>acid amide group for phosphatase. Herbicides inhibited the activities of soil enzyme in the early stage of treatment but increased the activities of urease, L-glutaminase and protease in the late stage. When herbicides were treated in soil together with urea the degradation of insecticides was accelerated.

  • PDF

Acceleration of Aglycone Isoflavone and γ-Aminobutyric Acid Production from Doenjang Using Whole-Cell Biocatalysis Accompanied by Protease Treatment

  • Li, Yincong;Ku, Seockmo;Park, Myeong Soo;Li, Zhipeng;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1952-1960
    • /
    • 2017
  • Recently, soybean isoflavone aglycones (i.e., daidzein and genistein) and ${\gamma}-aminobutyric$ acid (GABA) have begun to receive considerable consumer attention owing to their potential as nutraceuticals. To produce these ingredients, multiple microorganisms and their enzymes are commonly used for catalysis in the nutraceutical industry. In this work, we introduce a novel fermentation process that uses whole-cell biocatalysis to accelerate GABA and isoflavone aglycone production in doenjang (a traditional Korean soybean paste). Microbial enzymes transform soybean isoflavone glycosides (i.e., daidzin and genistin) and monosodium glutamate into soybean isoflavone aglycones and GABA. Lactobacillus brevis GABA 100 and Aspergillus oryzae KACC 40250 significantly reduced the production time with the aid of a protease. The resulting levels of GABA and daidzein were higher, and genistein production resembled the levels in traditional doenjang fermented for over a year. Concentrations of GABA, daidzein, and genistein were measured as 7,162, 60, and $59{\mu}g/g$, respectively on the seventh day of fermentation. Our results demonstrate that the administration of whole-cell L. brevis GABA 100 and A. oryzae KACC 40250 paired with a protease treatment is an effective method to accelerate GABA, daidzein, and genistein production in doenjang.

Quality Assessment of Yakju Brewed with Conventional Nuruk (전통누룩으로 빚은 발효주의 품질 평가)

  • 이미경;이성우;윤태현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.1
    • /
    • pp.78-89
    • /
    • 1994
  • To evaluate of quality of Yakju brewed with different types of fermenters(Nuruk) and brewed by a method described in Sallymkyungjae, blucoamylase and protease and protease activities of Nuruk were measured, and proximate composition , coloring degree, acetaldehyde , alcohol , , fusel oils , amino acid content , mineral content and sugar composition of Yakju samples were also determined. It was foung that the lower the pH, the lower the glucoamylase acitvity in Nuruk samples A to E . In A, B, D and H, protease activity washigher at ph 5.5 than at pH 5.0 . Yakju sampels 1 to 5 during fermentation , total acidity and amino acid content were high at the first step and were getting lower gradually at the second step. In Yakju samples 6 to 11 , ethanol content was high in 6b, 7b, 8a, 8b and 11b. At the second step, residual sugar content was getting higher gradually in 7 a, 11 a and 11b. The coloring degree of Yakju wasinfluenced by not only color of Nuruk but also Fe content in Yakju . Of the Yakju examined , only 9a and 9b contained acetaldehyde in trace amounts. Thanol content was the highest in 8a and 8b. Fusel oil content was high in 8a and 8b. In samples 6 to 9 , aspartic acid content was higher in treatment a than treatment a than treatment b, but tyrosine , histidine and proline contents were higher in treatment a than treatment b. The levels of frucose, melibiose, sorbitol, and arabinose in Yakju brewed from unsteamed rice were higher than in Yakju brewed from steamed rice. K content was the lowest in 9a and 9b. Na content was higher in treatment a than in treatment a than in treatment b. In only 6a, Ca/P ratio was more than one.

  • PDF

Modifications of skim milk protein by Meju protease and its effects on solubility, emulsion and foamming properties (메주 단백질 가수분해 효소가 탈지 우유의 기능성에 미치는 영향)

  • Lee, Jin-sil;Yoon, Sun
    • Korean journal of food and cookery science
    • /
    • v.9 no.4
    • /
    • pp.278-283
    • /
    • 1993
  • This study was attempted to investigate the effects of enzymatic modification of milk protein with protease on functional properties. The selected functional properties were solubility, emulsifying activity (EA), emulsion stability(ES), foam expansion(FE), and foam stability(FS). These properties were measu-red from pH 3.0 to pH 8.0. The proteases used in this study were iaolated from Meju(fermemted soybean) and had specific activity of 250 units/㎎ protein at pH 7.0, 1600 units of pretense was used for 1gr. of skim milk protein. Skim milk showed 30.5% degree of hydrolysis for 1 hr. and 36.4% degree of hydrolysis for 3.5 hrs. of protease treatment at pH 7.0. Solubility of native skim milk, control, 1 hr. and 3.5 hrs. groups were 3.37, 3.64, 10.21, 14.34%o at pH 4.0 respcetively. The emulsifying activity of native skim milk, control, 1 hr. and 3.5 hrs. groups were 38.8,42.0,43.0,46.7ft at pH 4.0, respectively. Enzymatic modification resulted in the increase of solubility and emulsifying activity at pH 4.0. However at pH 5.0 emulsifying activity of 1 hr. and 3.5 hr. group were lower than native skim milk and control groups. 1 hr. protease treatment was found to be most effective way of increasing foam expansion at pH 4.0 to 6.0. It was supported that, protease treated skim milk can be used to improve solubility, emulsifying activity, foam expansion at acid pH. meju protease. skim milk, solubility, emulsion, foam.

  • PDF

The Study on the Effect of Plasma Pre-treatment on the Dyeing Properties and the Handle in the Environment Friendly Enzyme Finishing (친환경 효소가공에서 플라즈마 전처리가 염색성과 태에 미치는 영향)

  • Kim, Ji-Hyun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2008
  • Cotton, wool, cotton/wool blended (80:20) and tencel fabrics were treated with low temperature oxygen plasma, enzymes (cellulase or protease), or oxygen plasma-enzyme and they were examined for dyeing and handling properties for environment friendly finishing. The appropriate conditions for cellulase treatment were enzyme concentration of 3g/l, pH of 5, and $60^{\circ}C$ for one hour, and for protease treatment were enzyme concentration of 4g/l, pH of 8, and $60^{\circ}C$ for one hour. The equilibrium uptake of a direct dye on cotton changed with plasma treatment and plasma-cellulase treatment, and the rate of dyeing slightly decreased. When wool was dyed with acid dye, the equilibrium dye uptake did not change with plasma, protease treatment nor plasma-protease treatment, however, the rate of dyeing had increased with plasma-protease treatment. From these results, it is assumed that plasma attacks the surface of the fiber, and enzyme mainly affects the inner part of the fiber. Plasma treatment did not affect mechanical properties related to the handling of fabrics. The handling test showed increased extension at maxmum load(EM), tensile energy(WT) with decreased tensile resilience (RT), and the fabrics became softer but resilience decreased slightly with enzyme treatment. The bending recidity(B), hysteresis of bending moment(2HB), and hysteresis of shear force at five degrees(2HG5) decreased, however, shear stiffness(G) increased. I knew the plasma pre-treatment made fabrics softer with lower koshi(stiffness). The handling of plasma pre-treated fabrics was better than that of enzyme-treated fabrics. When we pre-treated fabrics, the handling test showed decreased coefficient of friction(MIU), geometrical roughness(SMD), while the surface of fabrics became smoother and numeri increased. Even though compression resilience(RC) increased, fukurami(bulky property) and compressive elasticity, decreased due to the linearity of compression-thickness curve(LC) and compression energy(WC).

  • PDF

Characterization of a Fibrinolytic Serine Protease from an Edible Mushroom, Albatrellus confluens (다발구멍장이버섯으로부터 분리한 혈전용해 세린분해효소의 특성 연구)

  • Kim, Jun-Ho
    • The Korean Journal of Mycology
    • /
    • v.36 no.2
    • /
    • pp.183-188
    • /
    • 2008
  • A fibrinolytic serine protease was purified from the fruiting bodies of an edible mushroom, Albatrellus confluens. The enzyme had a molecular mass of 30086.41 Da, as measured by MALDI-TOF mass spectrometry. The N-terminal amino acid sequence of the enzyme was Glu-Thr-Val-Thr-Glu-Thr-Thr-Ala -Pro-Trp-Gly-Leu-Ser-Arg-Ile. It displayed optimal activity at $50^{\circ}C$ and within a pH range of $8.0{\sim}10.0$, suggesting that the enzyme is an alkaline protease. The enzyme was stable up to $30^{\circ}C$. The enzyme displayed a strong substrate specificity for the synthetic peptide, N-Suc-Ala-Ala-Pro-Phe pNA. The enzyme activity was completely inhibited by addition of PMSF, indicating that the enzyme is a serine protease. No inhibition was observed following addition of E-64, pepstatin, or EDTA. The activity of the purified enzyme was decreased in the presence $Fe^{2+}$ or $Co^{2+}$, and the enzyme was completely inhibited by addition of $Hg^{2+}$. From these results, we propose that Albatrellus confluens could be used for biofunctional foods development and has potential therapeutic value for the treatment of vascular diseases.