• 제목/요약/키워드: Acid protease

검색결과 670건 처리시간 0.032초

Purification and Characterization of Thermotolerable Alkaline Protease by Alkalophilic Bacillus sp. No. 8-16 (알칼리성 Bacillus sp. No.8-16의 내열ㆍ알칼리성 단백질 분해효소의 정제와 특성)

  • Bae, Moo;Park, Pil-Yon
    • Microbiology and Biotechnology Letters
    • /
    • 제17권6호
    • /
    • pp.545-551
    • /
    • 1989
  • Thermostable alkaline protease of alkalophilic Bacillus sp. No. 8-16 has been purified, and the properties of the enzyme investigated. The characteristic point of the organism used is especially good growth in alkaline and thermal condition. The alkaline protease of the strain No. 8-16 was purified from crude enzyme by acetone precipitation, CM-cellulose ion exchange chromatography, Sephadex G-100 and Sephadex G-75 gel filtration. Through the series of chromatograpies, the enzyme was purified to homogeneity with specific activity of 37 fold higher than that of the crude broth. Characteristics of the purified enzyme were as follow; $K_m$ value for the enzyme was 1.3 mg/ml, the alkaline protease showed a maximal activity at 7$0^{\circ}C$ and from the pH 6.0 through 12.0, and stable for 1 hr. at 6$0^{\circ}C$. The moleclar weight of the enzyme was estimated to be 33,000 by Sephadex G-100 gel filtration. The activity of the alkaline protease was inhibited by iodoacetic acid and Ag$^+$, Hg$^+$, PMSF (phenylmethylsulfonyl fluoride), and activated by $Ca^{2+}$ and Mn$^{2+}$.

  • PDF

Production and Purification of Alkaline Protease from Streptomyces sp. (Streptomyces속 균주가 생성하는 Alkaline Protease의 생산 및 정제)

  • Choi, Cheong;Chung, Yung-Gun;Sung, Sam-Kyung;Choi, Kwang-Soo;Lee, Jae-Sung;Cho, Young-Je;Kwon, Oh-Jin
    • Microbiology and Biotechnology Letters
    • /
    • 제20권2호
    • /
    • pp.169-177
    • /
    • 1992
  • An alkaline protease producing microorganism was isolated from soil and identified as Streptomyces griseus HC-1141. The optimum culture condition of Streptomyces griseus HC- 1141 for the production of alkaline protease was as follows; 0.5% casein, 0.05% ammonium chloride, 0.1% ferrous sulfate. 2.0% lactose, pH 8.0 and 84 hrs. The enzyme was purified about 53 folds by ammonium sulfate treatment, DEAE-cellulose ion exchange chromatography and gel filtratioo on Sephadex G-150. The homogeneity of the purified enzyme was verified by polyacrylamide gel electrophoresis. The molecular weight was estimated to be 31,000 on sodium dodecyl sulfate polyacrylamide gel electrophoresis. This enzyme consists of glycine and glutamic acid as major amino acids. The N-terminal and C-terminal residues of the alkaline protease were leucine and histidine respectively.

  • PDF

The Study on Amylolytic Enzyme and Protease Activities of Kimchi (김치에 있어서의 amylolytic enzyme과 protease 활성에 관한 연구)

  • Hahn, Young-Sook;Oh, Ji-Young;Song, Joo-Eun
    • Korean Journal of Food Science and Technology
    • /
    • 제34권2호
    • /
    • pp.269-273
    • /
    • 2002
  • The amlyolytic enzymes $({\alpha}-amlyase,\;{\beta}-amlyase,\;glucoamlyase)$ and protease activities were studied during Kimchi fermentation. The optimum pH of Kimchi was 4.1 within 2 days at $20^{\circ}C$. The optimum acidity calculated as lactic acid was 0.44% within 2 days at $20^{\circ}C$. On the first day of fermentation, ${\alpha}-amlyase$ activity was reduced from 0.49 unit/mg protein to 0.20 unit/mg protein but increased in the later stage of fermentation. In case of ${\beta}-amlyase,\;glucoamlyase$ and protease showed the highest activity of 505.73, 13.43 and 1.72 unit/mg protein at the 2nd day of fermentation at $20^{\circ}C$. In the sensory evaluation of Kimchi were estimated taste, color, texture and overall acceptability. Overall acceptability of kimchi showed the highest score value on the 2nd day of fermentation, respectively.

Comparative Biochemical Properties of Proteinases from the Hepatopancreas of Shrimp. -I. Purification of Protease from the Hepatopancreas of Penaeus japonicus-

  • Choi Sung-Mi;Oh Eun-Sil;Kim Doo-Sang;Pyeun Jae-Hyeung;Cho Deuk-Moon;Ahn Chang-Bum;Kim Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • 제1권2호
    • /
    • pp.201-208
    • /
    • 1998
  • A protease, which had no tryptic and chymotryptic activity, was purified from the hepatopancreas of shrimp, P. japonicus, through ammonium sulfate fractionation, Q­Sepharose ionic exchange, benzamidine Sepharose 6B affinity, and Sephacryl S-100 gel chromatography. Molecular weight (M.W.) of the protease was estimated to be 24 kDa by gel filtration and showed a single peptide band by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). The protease had a low ratio of acidic to basic amino acids, which is different with pro teases from marine animals. The enzyme was partially inhibited by benzamidine, tosyl-L-lysine chioromethyl ketone (TLCK), phenylmethylsulfonyl fluoride (PMSF), soybean trypsin inhibitor (SBTI), and pepstatin. The enzyme did not have any activity against benzoyl-D,L-arginine p-nitroanilide (BAPNA) or benzoyl-L-tyrosine ethyl ester (BTEE) which is a specific substrate of trypsin and chymotrypsin, respectively. However, the enzyme showed activity forward N-CBZ-L-tyrosine p-nitrophenyl ester (CBZ-Tyr-pNE), N­CBZ-L-tryptophan p-nitrophenyl ester (CBZ-Trp-pNE), and N-CBZ-L-proline p-nitrophenyl ester (CBZ-Pro-pNE). The protease did not showed tryptic and chymotryptic activity, which was not reported in shrimp hepatopancreas.

  • PDF

Separation and Purification of Protease from Bacillus subtlils CCKS-111 in Korean Traditional Soy Sauce (한국재래간장으로 부터 분리한 Bacillus subtilis CCKS-111이 생성하는 Protease의 분리 및 정제)

  • Kim, Sung;Lim, Seong-Il;Lee, Hee-Duck;Lee, Seon-Ho;Son, Jun-Ho;Choi, Hee-Jin;Kim, Yeung-Hweal;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • 제40권3호
    • /
    • pp.178-183
    • /
    • 1997
  • A protease was purified from Bacillus subtilis CCKS-111 by ammonium sulfate treatment, DEAE-cellulose ion-exchange chromatography, Sephadex G-100 gel filtration and high performance liquid chromatography (HPLC). The specific activity of the purified enzyme was 24.3 unit/mg protein and the purification fold of enzyme was 50.6. Molecular weight of the purified enzyme estimated about 28,000 by HPLC gel filtration. The amino acid residues of this enzyme were 251.3 except threonine, serine and glycine. This result was similar to Bacillus subtilis subtilisin DY. From the first N-terminal amino acid to the 32th amino acid, the amino acid sequence was estimated after RP-HPLC elution. N-terminal and the 32th amino acids were alanine and aspartic acid. Alanine, serine, glycine and arginine were four major acids in the enzyme.

  • PDF

Optimal Conditions for the Production of Salt-tolerant Protease from Aspergillus sp. 101 and Its Characteristics (Aspergillus sp. 101로부터 내염성 단백분해효소 생산을 위한 최적 조건 및 특성)

  • Hwang, Joo-Yeon;Choi, Seung-Hwa;Lee, Si-Kyung;Kim, Sang-Moo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제38권11호
    • /
    • pp.1612-1617
    • /
    • 2009
  • Aspergillus sp. 101 was isolated from the Korean traditional soybean paste for the production of a salt-tolerant protease. The optimal condition for the production of a salt-tolerant protease was determined with various energy sources such as carbon, nitrogen, and protein, and at different culture conditions such as temperature, pH, incubation time and NaCl concentration. The most favorable organic nitrogen sources were 2% defatted soybean flour (DSF) and soy protein isolate (SPI). Optimal pH and temperature were pH 6.0 and $25{\sim}27^{\circ}C$, respectively. Therefore, Aspergillus sp. 101 protease was a mild acid (or neutral) protease. Protease production was the highest at 0.1% concentration of $CaCO_3,\;K_2HPO_4$ and Arabicgum. Aspergillus sp. 101 could grow in culture medium at 15% NaCl concentration and produce a salt-tolerant protease even at 7% NaCl. The cell mass and protease activity of Aspergillus sp. 101 cultured in a modified medium was comparatively higher in Czapek dox and protease producing media. Hence, Aspergillus sp. 101 protease can be utilized in soy or fish sauce industry as a salt-tolerant protease starter.

Characterization of Extracellular Protease Secreted from Chryseobacterium sp. JK1 (Chryseobacterium sp. JK1이 분비하는 세포외 단백질분해효소 특성)

  • Lee, Yu-Kyong;Oh, Ji-Sung;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • 제49권1호
    • /
    • pp.78-82
    • /
    • 2013
  • A novel Chryseobacterium sp. JK1 strain isolated from soil had been reported that this isolate produced large amount of extracellular protease at mesophilic temperature in previous study. The optimal temperature and pH of extracellular protease were $40^{\circ}C$ and 7.0, respectively, showing narrow range of optimal temperature and relatively broad activity from pH 6.0 to 9.0. In addition, the protease showed greatest activity against skim milk and lowest against bovine serum albumin (BSA). The protease strongly inhibited by ethylenediaminetetraacetic acid (EDTA), ethylene glycol tetraacetic acid (EGTA) or phenylmethylsulfonyl fluoride (PMSF), and addition of cation $Ag^+$ or $Cu^{2+}$, and slightly inhibited by $Al^{3+}$. No significant inhibition was found with pepstatin, and addition of cation, $K^+$, $Ca^{2+}$, $Na^+$, $Fe^{2+}$ or $Mg^{2+}$. On the contrary, protease was enhanced by addition of divalent cation $Mn^{2+}$ (5 mM). Zymography analysis of concentrated culture supernatant revealed two major bands at 67 and 145 kDa. These results suggest that Chryseobacterium sp. JK1 strain produced extracellular neutral serine proteases which could apply in food industry.

Effects of the ratio of raw materials on the quality and taste of soy sauce - (1) Studies on the changes of Enzymatic activities and chemical components during Koji Preparation with various ratio of raw materials - (원료배합(原料配合)이 간장의 품질(品質)과 풍미(風味)에 미치는 영향(影響) - 제1보(第一報) 원료배합(原料配合)을 달리한 고일(一)지제조중(製造中)의 효소역가(酵素力價)및 성분변화(成分變化)에 관(關)한 실험(實驗) -)

  • Kim, Yong-Hwi;Kim, Jae-Uk
    • Applied Biological Chemistry
    • /
    • 제4권
    • /
    • pp.17-22
    • /
    • 1963
  • Changes of Enzymatic activities and chemical components during Koji preparation of soy sauce with various ratio of soy bean and wheat were studied as first step for checking the current ratio of raw materials for improved soy sauce and determination of proper ratio of them in the respect to its quality and taste, and following results could be obtained. 1. The Protease in the dryed Koji were mainly conmposed of a part which active at the neutral (about pH 6.0) range, while parts which active at acid and alkaline side were inferior. The more amount of wheat increases as raw materials of Koji, the stronger Protease activities of acid and neural side were, while the weaker alkaline side were. 2. Activity of Enzymes were increased rapidly in earlier stage then gradually in later stage or Protease and ${\beta}-Amylase$ rapidly throughout except drying of ${\beta}-Amylase$ during the course of Koji preparation. The more amount of wheat as raw material increases, the stronger Protease and ${\beta}-Amylase$ activity except. ${\beta}-Amylase$ were. 3. Reducing sugar, amino nitrogen, total nitrogen were increased, while total sugar were decreased during the course of Koji preparation. 4. The more amount of wheat increases as raw materials, the more increase reducing sugar, total sugar were, while the total nitrogen were decreased, no noticeable differences were observed in the amino nitrogen among the dryed Kojies.

  • PDF

Antimicrobial Activity of Gluten Hydrolysate with Asp. saitoi Protease (밀 단백 효소 가수분해물의 항균활성)

  • Lee, Sang-Duk;Joo, Jeong-Hyeon;Lee, Gyu-Hee;Lee, K.T.;Oh, Man-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제32권5호
    • /
    • pp.745-751
    • /
    • 2003
  • This study was carried out to investigate whether peptide produced from wheat protein by enzyme hydrolysis can be used as a natural antimicrobial agent. Antimicrobial peptide was obtained from wheat protein hydrolyzed by 7 of pretense. The produced antimicrobial peptide was purified through ultrafiltration, membrane filtration and HPLC and molecular weight and amino acid sequence of the purified antimicrobial peptide were determined. Among hydrolysate produced from wheat protein by 7 of protease, antimicrobial activity was observed for the peptide obtained from Asp. saito protease. The Asp. saito protease did produce antimicrobial hydrolysate showing the highest antimicrobial activity at reaction condition of 37$^{\circ}C$ and pH 6.0, but not at reaction condition above 5$0^{\circ}C$. Wheat protein hydrolysate was fractionated by membrane filtration and showed antimicrobial activity between molecular weight 1,000~3,000. The antimicrobial activity fraction obtained by membrane filtration was separated through HPLC and showed antimicrobial activity in the peak of retention time 31.1~31.8 min. We could convince this hydrolysate as heat-stable peptide since antimicrobial activity was maintained after treated with heat for 15 min at 121$^{\circ}C$. Molecular weight of antimicrobial peptide identified by MALDI-mass was 1,633. Amino acid sequence of antimicrobial peptide was cysteine, glycine, prolin, prolin, prolin, valine, valine, alanine, alanine and arginine.

Study on the $\delta$-endotoxin by Bacillus thuringiensis subsp. indiana(TH109) (Bacillus thuringiensis subsp. indlana(TH109)가 생산한 $\delta$-endotoxin에 관한 연구)

  • 이광배;채용곤
    • Journal of environmental and Sanitary engineering
    • /
    • 제9권1호
    • /
    • pp.89-96
    • /
    • 1994
  • This report was investigate the biological characteristic of $\delta$-endotoxin of product by TH109 strain, one strain TH109 which has toxicity on Cockroach is isolate and identification. Generally the $\delta$-endotoxin of product by 3. thuringiensis strain was easily soluble in acid, alkaline and organic solvents but $\delta$-endotoxin of product by TH109 strain are insoluble in HCI, NaOH Thiol- reagent(25mM Dithiotheritol, 25mM Dithioeryritol, 25mM Nathioglycolate, 0.2M ESCN, 2% v/v $\beta$-mecaptethanol), organic solvents( acetone, $CCI_{4}$, ether, dioxin MeOH chloroforrh xylene ), Protease. Through this study of $\delta$-endotoxin produced by TH109 strain is insoluble in acid, alkaline, organic solvents and pretense etc. In the point of view, it is greater possibility that $\delta$-endotoxin will be transform into toxin by the reducible materials instead of the reaction of protease in the intestine.

  • PDF