• Title/Summary/Keyword: Acid producing potential

Search Result 125, Processing Time 0.026 seconds

임기광산 폐석 및 퇴적물의 산성배수발생 능력 평가

  • 정영욱;임길재;지상우;민정식;최용석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.390-393
    • /
    • 2004
  • This study was carried out to evaluate the acid producing potential of geological materials such as pit wall, waste rock and stream sediments near the abandoned Imgi mine. The 17 samples used in this study were collected and then treated by static test such as Acid Base Accounting and etc. Samples of pit wall and waste rocks with high S content display a NAGpH values below 4.5 and net acid potential. Therefore some cost effective measures such as capping and groudwater flow barriers, will be required to reduce the impacts of ARD from the waste rock impoundment and the pit wall on near the stream.

  • PDF

Effect of sulfuric acid hydrolysis condition on yield, particle size and surface charge of cellulose nanocrystals (황산 가수분해 조건이 셀룰로오스 나노크리스탈의 수율, 입도 및 전기화학적 특성에 미치는 영향)

  • Ryu, Jae-Ho;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.67-75
    • /
    • 2011
  • Sulfuric acid hydrolysis is a typical approach for producing cellulose nanocrystals. The method has been widely used, but it has a disadvantage of low yield of cellulose nanocrystals compared to mechanical method. To expand the application of cellulose nanocrystals in practical, we should be able to produce them with higher yield and the controlled properties. In this study, therefore, we intended to investigate the effect of sulfuric acid hydrolysis condition on the characteristics of the prepared cellulose nanocrystals. The concentration of sulfuric acid, temperature and hydrolysis time were varied, and the yield as well as diverse properties including the morphology, size and zeta potential were examined. We could obtain cellulose nanocrystals up to 70% of yield and found that the properties were dependent on the reaction condition. It would be helpful to select an appropriate condition for producing cellulose nanocrystals.

Characterization of L-(+)-Lactic Acid Producing Weizmannia coagulans Strains from Tree Barks and Probiogenomic Evaluation of BKMTCR2-2

  • Jenjuiree Mahittikon;Sitanan Thitiprasert;Sitanan Thitiprasert;Naoto Tanaka;Yuh Shiwa;Nitcha Chamroensaksri;Somboon Tanasupawat
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.403-415
    • /
    • 2023
  • This study aimed to isolate and identify L-(+)-lactic acid-producing bacteria from tree barks collected in Thailand and evaluate the potential strain as probiotics. Twelve strains were isolated and characterized phenotypically and genotypically. The strains exhibited a rod-shaped morphology, high-temperature tolerance, and the ability to ferment different sugars into lactic acid. Based on 16S rRNA gene analysis, all strains were identified as belonging to Weizmannia coagulans. Among the isolated strains, BKMTCR2-2 demonstrated exceptional lactic acid production, with 96.41% optical purity, 2.33 g/l of lactic acid production, 1.44 g/g of lactic acid yield (per gram of glucose consumption), and 0.0049 g/l/h of lactic acid productivity. This strain also displayed a wide range of pH tolerance, suggesting suitability for the human gastrointestinal tract and potential probiotic applications. The whole-genome sequence of BKMTCR2-2 was assembled using a hybridization approach that combined long and short reads. The genomic analysis confirmed its identification as W. coagulans and safety assessments revealed its non-pathogenic attribute compared to type strains and commercial probiotic strains. Furthermore, this strain exhibited resilience to acidic and bile conditions, along with the presence of potential probiotic-related genes and metabolic capabilities. These findings suggest that BKMTCR2-2 holds promise as a safe and effective probiotic strain with significant lactic acid production capabilities.

Characteristics of Potential Gamma-Aminobutyric Acid-Producing Bacteria Isolated from Korean and Vietnamese Fermented Fish Products

  • Vo, Thi Thu-Thao;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.209-221
    • /
    • 2019
  • Gamma-aminobutyric acid (GABA) is a neurotransmitter that exerts several physiological functions and positive effects on human health. The aim of this study was to isolate and characterize the strains that had GABA-producing abilities from various fermented fish products. A total of 91 acid-producing strains were isolated from 41 samples of fermented fish products, and 27 strains showing GABA-producing abilities were identified by the 16S rDNA sequences. Among the strains, 31% strains tolerated at high-salt environment of 10-20% throughout the fermentation of fish sauces. The 27 isolates that produced GABA at various concentrations did so in the range of 5 to 454 mM. These GABA-producing isolates were identified as lactic acid bacteria of 14 strains, which included twelve Lactococcus lactis, one Enterococcus faecium, and one Lactococcus pentosus; eight Bacillus cereus group, which included seven B. thuringiensis and one B. cereus; and five Staphylococcus spp. Interestingly, with Vietnamese fish sauces, we mostly identified species of B. thuringiensis and Staphylococcus spp., while with Korean fermented fish products, the majority of the strains identified belonged to L. lactis. Among the strains, B. thuringiensis LH2134 produced the highest levels of GABA at 366 mM among the strains identified from Vietnamese fish sauces, whereas L. lactis LA43, a new strain isolated from Korean jeotgal (salted shrimp paste), produced the highest amount of GABA at 454 mM and the glutamate concentration in the medium was essential for GABA accumulation. Therefore, such the isolates might serve as good starters for development of more GABA-reinforced foods among fermented fish products.

Damage Conditions and Assessment for Cut Slope Structures due to Acid Rock Drainage (산성암반배수에 의한 절취사면 구조물의 피해 현황과 평가)

  • Lee Gyoo Ho;Kim Jae Gon;Park Sam-Gyu;Lee Jin-Soo;Chon Chul-Min;Kim Tack Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.83-92
    • /
    • 2005
  • The aim of this study was to investigate damage conditions of cut slope structures due to acid rock drainage (ARB) and to assess the acid production potential of various rocks. Acid rock drainage is produced by the oxidation of sulfide minerals contained in coal mine zone and mineralization belt of Pyeongan supergroup and Ogcheon group, pyrite-bearing andesite, and Tertiary acid sulfate soils in Korea. Most of cut slopes producing ARB have been treated with shotcrete to reduce ARD. According to the field observations, ARD had an adverse effect on slope structures. The corrosion of shotcrete, anchors and rock bolts and the bad germination and growth diseases of covering plants due to ARD were observed in the field. The concentration of heavy metals and pH of ARD from cut slope exceeded the environmental standard, indicating a high potential of environmental pollution of surrounding soil, surface water and ground water by the ARD. According to acid base accounting (ABA) of the studied samples, hydrothermally altered volcanic rocks, tuffs, coaly shales, tailings of metallic mine had a relatively high potential of acid production but gneiss and granite had no or less acid production potential. It is expected that the number of cut slopes will increase hereafter considering the present construction trend. In order to reduce the adverse effect of ARD in construction sites, we need to secure the data base for potential ARD producing area and to develop the ARD reduction technologies suitable.

Comparison of Major Components of Sesame Oil Extracted from Korean and Chinese Sesames (한국산 및 중국산 참깨로부터 착유한 참기름의 주요성분 비교)

  • 서정희;김제란;이기동;권중호
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.3
    • /
    • pp.215-220
    • /
    • 1996
  • Korean and Chinese sesames were subjected to microscopic observation and instrumental determination of fatty acid composition and sesamolin/sesamin ratio to obtain basic data for discriminating each other. The overall appearance of both samples was differently observed by stereo microscope (X8). Fatty acid composition of sesame oils, extracted from both samples with different roasting degrees, showed a similar pattern although Chinese samples cointained about 6% higher content of stearic acid and 47% lower content of linolenic acid then Korean ones. The sesamolin/sesamin ratio was remarkably lower(.039) in Chinese samples than Korean (0.67∼0.72). showing a variation depending on producing districts. Roasting degrees of raw sesames little influenced their composition of fatty acid and sesamolin/sesamin ratio. Based on the above results, it is considered that the comparison between domestic and Chinese sesames in view of their stearic and linolenic acid contents and sesamolin/sesamin ratio might be one of the potential criteria in discriminating their production origins.

  • PDF

Characterization of exopolysaccharide-producing lactic acid bacteria from Taiwanese ropy fermented milk and their application in low-fat fermented milk

  • Ng, Ker-Sin;Chang, Yu-Chun;Chen, Yen-Po;Lo, Ya-Hsuan;Wang, Sheng-Yao;Chen, Ming-Ju
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.281-289
    • /
    • 2022
  • Objective: The aim of this study was to characterize the exopolysaccharides (EPS)-producing lactic acid bacteria from Taiwanese ropy fermented milk (TRFM) for developing a clean label low-fat fermented milk. Methods: Potential isolates from TRFM were selected based on the Gram staining test and observation of turbid suspension in the culture broth. Random amplified polymorphic DNA-polymerase chain reaction, 16S rRNA gene sequencing, and API CHL 50 test were used for strain identification. After evaluation of EPS concentration, target strains were introduced to low-fat milk fermentation for 24 h. Fermentation characters were checked: pH value, acidity, viable count, syneresis, and viscosity. Sensory evaluation of fermented products was carried out by 30 volunteers, while the storage test was performed for 21 days at 4℃. Results: Two EPS-producing strains (APL15 and APL16) were isolated from TRFM and identified as Lactococcus (Lc.) lactis subsp. cremoris. Their EPS concentrations in glucose and lactose media were higher than other published strains of Lc. lactis subsp. cremoris. Low-fat fermented milk separately prepared with APL15 and APL16 reached pH 4.3 and acidity 0.8% with a viable count of 9 log colony-forming units/mL. The physical properties of both products were superior to the control yogurt, showing significant improvements in syneresis and viscosity (p<0.05). Our low-fat products had appropriate sensory scores in appearance and texture according to sensory evaluation. Although decreasing viable cells of strains during the 21-day storage test, low-fat fermented milk made by APL15 exhibited stable physicochemical properties, including pH value, acidity, syneresis and sufficient viable cells throughout the storage period. Conclusion: This study demonstrated that Lc. lactis subsp. cremoris APL15 isolated from TRFM had good fermentation abilities to produce low-fat fermented milk. These data indicate that EPS-producing lactic acid bacteria have great potential to act as natural food stabilizers for low-fat fermented milk.

Increase of Conjugated Linoleic Acid (CLA) Contents in Milk by Fermentation with Bifidobacteria Isolated from Korean Infants (한국 유아에서 분리한 Bifidobacteria에 의한 발효유의 Conjugated Linoleic Acid (CLA) 함량 증가)

  • Lee, Hyo-Ku;Kwon, Yung-Tae;Kang, Hye-Soon;Yoon, Chil-Surk;Jeong, Jae-Hong;Kim, In-Hwan;Chung, Soo-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1348-1352
    • /
    • 2004
  • More than 200 Bifidobacterium sp. originated from human intestine were investigated for their ability to produce conjugated linoleic acid (CLA). Of the Bifidobacteria tested, 1 of culture type strain and 12 isolated strains from Korean infants showed CLA producing ability. cis-9, trans-11 octadecadienoic acid presented more than 90% of the total CLA isomers produced by the Bifidobacteria. CLA content in fermented milk by Bifidobacterium sp. KHU 141 increased by 39.6 mg/l00 g, which showed the potential use for producing fermented milk containing high content of CLA. In fermented milk, little changes showed in lauric acid, myristric acid, palmitic acid, oleic acid, and linolenic acid contents, whereas the content of linoleic acid (LA) decreased and the content of CLA increased. Bifidobacterium sp. KHU 141 converted 86.0% and 84.8% of LA consumed to CLA for 24 hr and 48 hr fermentation, respectively. Prolonging incubation from 24 to 48 hours did not appear to enhance CLA formation and CLA producing ability was stable whether bottle, test tube, or fermenter was used for making fermented milk by Bifidobacterium sp. KHU 141.

Synergistic Effects of Bacteriocin-Producing Pediococcus acidilactici K10 and Organic Acids on Inhibiting Escherichia coli O157:H7 and Applications in Ground Beef

  • Moon, Gi-Seong;Kim, Wang-June;Kim, Myung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.936-942
    • /
    • 2002
  • When used in combination with organic acids, Pediococcus acidilactici K10 or its bacteriocin was effective in inhibiting Escherichia coli O157:H7 in vitro and in situ. P. acidilactici K10, a strain of bacteriocin-producing lactic acid bacteria (LAB), was previously isolated from kimchi in our laboratory, and the molecular weight of its bacteriocin was estimated to be around 4,500 Da by SDS-PAGE. Initially, P. acidilactici K10 and its bacteriocin could not inhibit E. coli O157:H7, when used alone. However, when they were used together with organic acids such as acetic, lactic, and succinic acids, they greatly inhibited E. coli O157:H7 in vitro. Based on these in vitro results, a real sample test with ground beef was conducted at $4^{\circ}C$ with acetic acid (0.25%) or lactic acid (0.35%) alone, and then in combination with P. acidilactici K10 (10^5 CFU/g of sample). Combined treatment of P. acidilactici K10 with lactic acid showed the most inhibitory effect: a 2.8-$log_{10}$-unit reduction of E. coli O157:H7 in ground beef during storage at $4^{\circ}C$. This result suggests that the combination of bacteriocin-producing P. acidilactici K10 and organic acids has great potential as a food biopreservative by inhibiting the growth of E. coli O157:H7.

Isolation and Characterization of Lipoxygenase-producing Bacteria for Industrial Applications (산업적 응용을 위한 Lipoxygenase 생산 세균의 분리 및 특성)

  • Kim, Yerin;Park, Gyulim;Kim, Yedam;Lee, O-Mi;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.31 no.3
    • /
    • pp.265-274
    • /
    • 2022
  • Lipoxygenase is an enzyme, mainly produced by plants, capable of converting unsaturated fatty acids to fatty acids. It has vast application potential in the food, pharmaceutical and agricultural industries. The aim of this study was to isolate novel lipoxygenase-producing bacteria from the environment and to investigate the lipoxygenase enzymatic properties for industrial production. The strain, NC1, isolated from cultivation soils, was identified as Bacillus subtilis based on the phenotypic characteristics and 16S rRNA gene sequencing. This strain formed a pink color around the colony when cultured on indamine dye formation plates. The production of lipoxygenase by B. subtilis NC1 was influenced by the composition of the medium and linoleic acid concentrations. The optimum temperature and pH for lipoxygenase activity was determined to be 40 ℃ and pH 6, respectively. The enzyme showed relatively high stability at temperatures ranging from 20-50 ℃ and acid-neutral regions. In addition, the lipoxygenase produced by B. subtilis NC1 was able to degrade commercially available oils including sunflower seed oil and Perilla oil. In this study, a useful indigenous bacterium was isolated, and the fundamental physicochemical data of bacterial lipoxygenase giving it industrial potential are presented.