• Title/Summary/Keyword: Acid Soil

Search Result 1,940, Processing Time 0.026 seconds

Acidification and Changes of Mineral Nutrient Availability in Soils Amended with Elemental Sulfur

  • Kim, Byoung-Ho;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.22-28
    • /
    • 2011
  • With the increasing cultivation of acid-loving plants such as blueberries, the artificial acidification of soils is frequently required. This research was conducted to determine the application rates of elemental sulfur (S) required in the soil acidification for blueberry cultivation. Laboratory incubation experiment was conducted to acidify three arable soils (pH 6-7) of different texture to pH 4.5-5.0 by the addition of varying amounts of elemental S. All rates of elemental S addition reduced soil pH, although the efficacy of acidification was related to the application rate and soil characteristics. pH reduction was slow in sandy loam soil, and the final equilibrium pH was obtained after 60, 43, and 30 days of incubation in sandy loam, loam, and silty clay, respectively. Although the final pHs obtained after 93 days of incubation were not significantly different among the three soils, the equilibrium pH was relatively higher in soil of higher clay content in the application rates of 1.5-2.0 g S $kg^{-1}$ soil. The estimated amounts of elemental S required in lowering pH to 4.5-5.0 were 0.59-1.01, 0.67-1.03, and 0.53-0.88 g S $kg^{-1}$ for sandy loam, loam, and silty clay, respectively. The lowest estimated amount of elemental S in the acidification of silty clay soil was attributable to the low organic matter content. For clay soils containing optimum level of organic matter, the application rates of elemental S should be much higher than those values estimated in this research. Soil acidification did not significantly increase the available concentrations of Ca, Mg and K. Extractable Cu and Zn was not greatly affected by the acidification, but extractable Fe, Mn, and Al in the acidified soils were higher than those found in non-acidified soils. Such increases in solubility are attributable to the dissolution of oxides and hydroxides of the elements.

Effects of Various Anions on Absorption and Toxicity of Lead in Plants (식물체의 연(Pb) 흡수 및 유해성에 미치는 음이온의 영향)

  • 성민웅
    • Journal of Plant Biology
    • /
    • v.20 no.1
    • /
    • pp.7-14
    • /
    • 1977
  • The seeds of bean(Glycine max M.) and corn(Zea mays L.) soaked in 5000ppm lead solution for 24 hours were sowed in the flowerpots being placed sandy-clay soil under the field condition. The fixed concentrations of various anions and 2000 ppm lead were supplied alternately in the sandy-clay soi of the flowerpots at two days interval from May to July in 1976. After the plants were harvested prior to the flowering stage, the lead contents of plnat and soil were analyzed by atomic absorption spectrophotometer. The lead contents absorbed by the plant roots showed the highest in an weak acid soil of the best suitable condition of plant growth. The absorption of lead by the plant roots was inhibited by the various anions, especially divalent anions of the soil. Some phosphate anions inhibited lead absorption more than otehr various anions in the soil. The more various anions were in the soil, the more plants could be protected from the lead toxicity. In the case of lead supply in the soil, 99.5% of lead was accumulated in the upper layer of the soil(0-10cm), and 0.5% of lead accumulated in the lower layer (10-20cm). Therefore, the yellow-brown and white symptoms on the leaves and the inhibition of root growth by lead toxicity was increased in the early stage of the germination, however decreased in accordance with the progress of the growing stage becuase of the root growth toward beneath the lower layer of the soil. In spite of the contents of 3773ppm lead in the soil, the symptoms of lead toxicity was not found in the grown plants. At that time the lead contents of the plants absorbed from the soil were minimum 0.78ppm and maximum 3.64ppm through the growing stage.

  • PDF

Effects of DTPA application on Growth of Red Pepper (Capsicum annuum L.) and Chemical Properties of Nutrient Accumulated Soil in Plastic film House

  • Kim, Myung Sook;Kim, Yoo Hak;Lee, Chang Hoon;Park, Seong Jin;Ko, Byong Gu;Yun, Sun Gang;Hyun, Byung Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.312-317
    • /
    • 2015
  • This study was conducted to evaluate effects of diethylene triamine penta acetic acid (DTPA) treatment on growth of red pepper and nutrient availability to salt accumulated soil in the plastic film house. The treatments were no application (Control), chemical fertilizers (NPK), DTPA (0.06, 0.13, and 0.19 mM) and the half of chemical fertilizers (NPK) with DTPA 0.06 mM. Fruit yield of red pepper showed no significant difference between the treatments (control, NPK, DTPA 0.06 mM, 0.13 mM, except for DTPA 0.19 mM. Red peppers were killed by DTPA 0.19 mM treatment because the high concentration of DTPA was toxic to crop. However, dry mass (stem and leave) and nutrient uptake of red pepper in DTPA 0.06 mM treatment increased significantly compared with those of control. In particular, nutrient uptake of red pepper in DTPA 0.06 mM treatment increased in the order of Fe, Mn, and Zn > Ca and Mg > K, as the magnitude of the stability constants of DTPA. Thus the application of DTPA 0.06 mM was the most effective for the alleviation of nutrient accumulation in the plastic film house soils.

Amino Acids in Humic Acids Extracted from Organic By-product Fertilizers (유기질 부산물 비료에서 추출한 부식산 중 아미노산 특성)

  • Yang, Jae-E.;Kim, Jeong-Je;Shin, Myung-Kyo;Park, Yong-Ha
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.128-136
    • /
    • 1998
  • Most of total nitrogen in the surface soil exists in organic forms, of which amino acid-N is the major fraction. By-product fertilizers provide soil with humic substances, and humic acid is an essential component of humus. Amino acids(AAs) are easily converted to inorganic-N forms and thus play an important role in N fertility. This experiment was conducted to investigate the contents and distributions of AAs in humic acids which were extracted from the commercial by-product fertilizers of different composting materials. Total contents of AAs in humic acids ranged from 1.2 to 5.6%, of which neutral AAs were the highest with ranges of 0.8~4.5%. AAs contents in fertilizers composted from the plant residues such as leaf litter, sawdust and bark were in an order of neutral>acidic>basic AAs. In contrast, those from animal wastes, such as poultry and pig manures, were in an order of neutral>basic>acidic AAs. Distributions of total, acidic and neutral AAs were in the respective order of leaf litter>sawdust>pig manure>poultry manure>peat, bark>sawdust>leaf litter>peat and leaf litter>sawdust>bark>peat. Distributions of the basic AAs were in the reversed order of the acidic AAs. In bark fertilizer with increasing compost maturity, contents of the acidic AAs were increased in compensation for the decreases in those of neutral and basic AAs. Results demonstrated that distributions of amino acids in humic acid of by-product fertilizers were different from composting raw materials and degrees of humification.

  • PDF

Studies on the use of glutamic acid fermentation residuum in agriculture (아미노산(酸) 발효부산물(醱酵副産物)의 농업적이용(農業的利用)에 관(關)한 연구(硏究))

  • Oh, Wang Keun;Oh, Jae Sup;Lee, Gyeu Ha
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.2
    • /
    • pp.97-103
    • /
    • 1975
  • In order to use the glutamic acid fermentation residuum in agriculture effectively, comparison experiments of the residua liquid and dried solid, and compost on radish (Raphanus Sativus) and chinese cabbage (Brassica chinesis) were carried out, together with an investigation on some physical property changes of soil brought about by the use of the residua and compost. 1. An equal or somewhat superior effect of the glutamic acid fermentation residua solid and liquid, to urea was observed. 2. Both residua liquid and dried solid, tended to acidify soil and the tendency was observed to be somewhat servere in the latter. 3. The liquid fermentation residuum compounded with minor elements such as iron, manganese, zinc, copper and boron increased the yield of chinese cabbage compared with the liquid residuum alone. 4. Not only as a N, K fertilizer, the liquid residuum of glutamic acid fermentation could also be used as a source for liquid or solid compound fertilizer.

  • PDF

Studies on Phytotoxin in Intensively Cultivated Upland Crops -I. Identification of phytotoxin in soil and effects of phytotoxin application to the toxicity of hot-pepper plant (연작재배지토양(連作栽培地土壤)의 식물독소(植物毒素)에 관(關)한 연구(硏究) -제(第)1보(報) 토양중(土壤中) 식물독소(植物毒素)의 분리정량(分離定量) 및 식물독소(植物毒素) 첨가(添加)가 고추 유식물(幼植物)에 미치는 영향(影響))

  • Lee, Sang Kyu;Suh, Jang Sun;Kim, Young Sig;Park, Jun Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.1
    • /
    • pp.63-67
    • /
    • 1987
  • A laboratory experiment was conducted to find out the concentration of phytotoxin in intensively cultivated hot-pepper, garlic and chinese cabbage, and effects of these phytotoxin to the germination and growth of young hot-pepper plant. Also this experiment presents describes of the bio-assay method and results of phytotoxin application to the toxicity of hot-pepper plant. The results obtained were summarized as follows; 1. A series of non-volatile (aromatic) phenolic compounds such as hydroquinone, benzoic-, p-hydroxybenzoic, and vanillic acid were quantitatively and qualitatively analysed using BSA(N, O-bis(trimethylsilyl)acetamide) by means of gas chromatography method. 2. Phytotoxin as hydroquinone, benzoic-, p-hydroxybenzoic- and vanillic acid were determined in intensively cultivated hot- pepper, garlic and chinese cabbage. Highest concentration of phytotoxin was obtained in hot-pepper cultivated soil. 3. Direct toxic action of the applied phytotoxin to the germination and young hot-pepper plant growth was observed at the levels of 200 ppm. Benzoic acid was obtained the highest toxicity to the young hot-pepper plant growth. 4. Mode of actions of phytotoxins to the young hot-pepper plant growth were observed as stunting of stem elongation, discoloration of leaf and oxygen depletion from consideration as causes of symptom.

  • PDF

Nitrogen fractionation of organic materials applied to Korean ginseng (고려인삼(高麗人蔘) 유기질비료의 질소성장(窒素性狀)에 대하여)

  • Hong, Jung-Kook;Park, Hoon;Lee, Chong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.2
    • /
    • pp.91-97
    • /
    • 1979
  • 1. Nitrogenous compounds of-organic materials as nitrogen sources for Korean ginseng were characterized according to their solubility and chemical forms. 2. The extractable fractionation was as follows : Yakto group : non-extractable N > acid hydrolyzable N > acid nonhydrolyzable N > water sol. N, Litter group : acid hydrolyzable N > non-extractable N > water sol. N > acid non-hydrolyzable N, Bone meal : acid hydrolyzable N > water sol. N > acid non-hydrolyzable N. 3. Nitrogenous compounds in the water sol. fraction were : Yakto group and Litter group : humus N > amino acid N > nitrate N (recognized only in Yakto group) > ammonia N > hexosamine N > amide N, Bone meal : amino acid N > humus N > ammonia N > amide N. And nitrogenous compounds in the acid hydrolyzable fraction were : amino acid N > humus N ${\simeq}$ ammonia N > hexosamine N. 4. Availability was discussed about the major nitrogenous compounds (amino acid, humus and inorganic N) and the solubility.

  • PDF

Phosphate Solubilization and Plant Growth Promotion by Crop Associated Bacteria (인산용해미생물에 의한 불용성 인의 용해와 식물생장에 미치는 영향)

  • Na, Jung-Heang;Choi, Jin-Ho;Jin, Rong-De;Ko, Hyun-Sun;Park, Ro-Dong;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • Fourteen bacterial strains were isolated from crop rhizosphere and identified as phosphate solubilizing bacteria (PSB) by 16S rRNA analysis. Only 3 strains exhibited a strong ability to solubilize insoluble phosphate in agar medium containing a hydroxyapatite. The rates of P solubilization by isolates were ranged from 200 and $2300\;mg\;L^{-1}$, which are inversely correlated with pH in culture medium. Furthermore, HPLC analyses reveal the production of organic acid from the culture filtrates of PSB. Among these, strain Acinetobacter sp. released only gluconic acid, Pseudomonas orientalis produced gluconic acid which was subsequently converted into 2-ketogluconic acid, and Enterobacter asburiae released acetic acid and succinic acid. On the other hand, P. orientalis and E. asburiae released $372\;mg\;L^{-1}$ and $191\;mg\;L^{-1}$ of IAA into broth culture, respectively, while Acinetobacter sp. did not produce IAA. Furthermore, in vivo study showed that plant growth promoting effect by bacteria generally seemed to be increased IAA production and phosphate solubilization.

Behavior of Cadmium, Zinc, and Copper in soils -I. Effect of Organic Matter Treatment on Adsorption of Cadmium, Zinc, and Copper in soils- (토양내(土壤內) 카드뮴, 아연(亞鉛) 및 구리의 행동(行動)에 관한 연구(硏究) -제2보(第-報). 토양내(土壤內) 카드뮴, 아연(亞鉛) 및 구리의 흡착(吸着)에 미치는 유기물처리(有機物處理)의 영향(影響)-)

  • Yoo, Sun-Ho;Hyun, Hae-Nam
    • Applied Biological Chemistry
    • /
    • v.28 no.2
    • /
    • pp.68-75
    • /
    • 1985
  • Laboratory experiments were conducted to investigate the effect of compost and humic acid treatment on adsorption of Cd, Zn, and Cu in soils. Three soils differing in physical and chemical properties used in this experiments were Bonyrang (Typic Udifluvents) SL, Gangseo (Aquatic Eutrochrepts) L, and Gyorae (Typic Distrandepts) SiL. Adsorption of Cd, Zn, ana Cu on the soils followed Langmuir isotherm up to 75 ppm of initial concentration. The adsorption maxima of Cd, Zn, and Cu for the Bonryang soil, the lowest in pH, organic matter content, and CEC, were the lowest of the three soils. Although the Gyorae soil derived from volcanic ash was the highest in organic matter content and CEC, the adsorption maxima of heavy metals for the Gyorae soil were lower than those for the Gangseo soil of which organic content and CEC were intermidiate. The adsorption maxima/CEC ratios for the Bonryang, the Gangseo, the Gyorae soils were found to be in the range of $23{\sim}27%,\;28{\sim}57%$, and $11{\sim}14%$ respectively The bonding energy constants of Cd, Zn, and Cu for the soils were in the order of Gangseo>Bonryang>Gyorae soils. The adsorption maxima of Cd, Zu, and Cu for the Bonryang soil increased with compost treatment by $100{\sim}210%,\;90{\sim}230%$, and $130{\sim}290%$ respectively, while little difference was observed when the soil was treated with humic acid Bonding energy constants of Cd, Zn, and Cu for the Bonryang soil increased significantly with compost treatment, and showed insignificant correlation with humic acid treatment.

  • PDF

Isolation of Aspergillus niger K-25 Prroducing Acid-stable ${\alpha}-amylase$ (내산성(耐酸性) 아밀라제를 생산하는 Aspergillus niger 균주의 분리)

  • Cho, Myung-Hwan
    • The Korean Journal of Mycology
    • /
    • v.17 no.3
    • /
    • pp.149-153
    • /
    • 1989
  • One strain of Aspergillus niger K-25 producing an acid-stable ${\alpha}-amylase$ was isolated from the soil. The optimum culture conditions were investigated. The production of the acid-stable ${\alpha}-amylase$ was enhanced when the strain was incubated in a medium containing soluble starch 3.5%, peptone 2%, $KH_2PO_4$ 0.5%, $MaSO_4{\cdot}7H_2O$ 0.25% and $FeCI_3$ 1.0% at pH 3 for 7 days. However, higher activity of acid-stable ${\alpha}-amylase$ was demonstrated on wheat bran culture. Amylase production was doubled when A. niger K-25 was incubated on the wheat bran supplemented with fumaric acid buffer (pH 3).

  • PDF