• Title/Summary/Keyword: Acid Soil

Search Result 1,944, Processing Time 0.03 seconds

A Study on the Assessment of the Contamination by Acid Mine Drainage in Abandoned Coal Mines (국내폐탄광의 산성폐수 오염도 평가에 관한 연구)

  • 최우진
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.31-38
    • /
    • 1997
  • Temporal and spatial comparisons of acid mine drainage contaminated waters are difficult because of the complex physico-chemical nature of the pollutant. In the present study, an acid mine drainage index has been developed and evaluated for the assessment of surface waters. AMD index is calculated using a modified arithmetic weighted index using seven parameters which are most indicative of AMD contamination, i. e. pH value, sulphate, iron, zinc, aluminum, copper and manganese. Weighting is used to express the relative indicator value of each parameter. The proposed AMD index is used to quantify contamination from acid mine drainage over ten different old mine sites and assess the degree of impact on surface on surface waters. As a result of AMD evaluation, the Sukbong Mine located near the Moonkyung province showed lowest AMD value indicating the worst acid mine drainage quality. In overall, Youngdong mine sites showed higher contaimination compared to the other mine sites including Youngsuh, Choongbu, Suhbu and Nambu area.

  • PDF

Antimicrobial Activities of Extracts from Several Native and Exotic Plants in Korea (수 종의 한국자생식물과 귀화식물 추출액이 토양미생물에 미치는 항균활성)

  • Kim, Yong-Ok;Lee, Eun-Ju;Lee, Ho-Joon
    • The Korean Journal of Ecology
    • /
    • v.23 no.5
    • /
    • pp.353-357
    • /
    • 2000
  • The soil pH favored by several native plants in Korea ranges 5.33∼7.20, while a more acidic range of pH 3.95∼6.10 is acceptable to exotic plants. Ethanol extracts of native and exotic plants in Korea were investigated for antimicrobial activity against Bacillus sphiaericus 2362, Bacillus thuringiensis var. subtilis and Bacillus thuringiensis var. cereus and Actinomycetes. Higher antimicrobial activity was observed from the extract of exotic plants than those of native plants. The ethanol extract of Ambrosia artemisiifolia var. elatior was observed to have the highest antimicrobial activity against 4 species of soil microbes. Especially, antimicrobial activity of Ambrosia artemisiifolia var. elatior showed the largest clear zone of 48mm in Actinomycetes. Larger clear zone was formed in the order of caffeic acid, benzoic acid and ρ -coumaric acid among the nine chemical compounds. Accordingly, the antimicrobial activity of Ambrosia artemisiifolia var elatior against Actinomycetes was found to be due to the synergetic effect of chemical compounds.

  • PDF

Estimation of Nitrogen Mineralization of Organic Amendments Affected by Nitrogen Content in Upland Soil Conditions (밭토양 조건에서 질소함량별 유기자원의 질소 무기화율 추정)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.262-268
    • /
    • 2019
  • BACKGROUND: To investigate mineralization characteristics of organic resources in the soil, five materials (rice straw, cow manure sawdust compost, microorganism compost, mixed oil-cake, and amino acid fertilizer) were treated according to the nitrogen content, and an indoor incubation experiment was conducted for 128 days. The results of this analysis were applied to determine the nitrogen mineralization pattern of these organic resources. METHODS AND RESULTS: During the constant temperature incubation period, the nitrogen net mineralization rate of the organic resources was the highest in the amino acid fertilizer with the highest nitrogen content, and the lowest in the rice straw with the lowest nitrogen content. A positive correlation (0.96) was observed between the potential nitrogen mineralization rate and total nitrogen content. The mineralization rate constant, k, was negatively correlated with the organic matter (-0.96) and carbon content (-0.97). The nitrogen mineralization rate during the first cropping season, as estimated by the model, was 6.6%, 11.6%, 30.9%, 70.7%, and 81.0% for the rice straw, the cow manure sawdust compost, the microorganism compost, the mixed oil-cake, and the amino acid fertilizer, respectively. CONCLUSION: The nitrogen mineralization rate varies depending on the type of organic resources or the nitrogen content; thus, it can be used as an index for determining the nitrogen supply characteristics of the organic resource. Organic resources such as compost with low nitrogen content or those undergoing fermentation contain organic nitrogen. Organic nitrogen is stabilized during the composting process. Therefore, as the nitrogen mineralization rate of these resources is lower than that of non-fermented organic resources, it is desirable to use the fermented organic materials only to improve soil physical properties rather than to supply nutrients for the required amount of fertilizer.

Characterization of Heavy Metal-enriched Particles from Contaminated Soils in a Military Shooting Range (군사격장 오염토양 내 고농도 중금속함유 입자의 기초특성연구)

  • Kim, Jeeeun;Kim, Jeongjin;Bae, Bumhan;Kim, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.25-31
    • /
    • 2013
  • Civil and military firing ranges are usually contaminated with heavy metals such as lead and copper and remediation is required. Acid washing and extraction are common remediation methods. Lead contaminated firing range soil samples were collected and a preliminary study was conducted to evaluate the characteristics of the contamination and the contribution of high specific gravity particles. Ethylenediamine tetra acetic acid(EDTA) extraction was applied for the removal of heavy metal but the extraction was not feasible for the firing range soil. Even after the repeated EDTA extraction, the contamination were still over the Korean environmental standard indicating that soil particles highly contaminated with heavy metal which release the heavy metal ion even after the repeated extraction. Some colored and higher specific gravity particles were separated from the soil samples and analyzed. The colored particles have specific gravity of 2.5-6.6. The saturation ratio of Pb and EDTA was 4.9-32%. After removal of these colored particles, the sandy soil showed moderate contamination which can be treated with soil washing. This was proved with the five-level sequential extraction and TCLP tests.

Effects of Nutrient Source on Soil Physical, Chemical, and Microbial Properties in an Organic Pear Orchard (유기질 비료 급원이 배 과원의 토양 물리화학성 및 미생물성에 미치는 영향)

  • Choi, Hyun-Sug;Li, Xiong;Kim, Wol-Soo;Lee, Youn
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • BACKGROUND: This study was conducted to investigate the effects of different organic treatments and a chemical fertilizer on the soil chemical, physical, and microbial properties in an organic pear orchard. METHODS AND RESULTS: Control was referred as a NPK chemical fertilizer (15N-9P-10K) and organic treatments included compost containing with oil cake, compost containing with humic acid, and compost containing with chitin substance. All treatments applied at rates equivalent to 200 g N per tree per year under the tree canopy in March 30 of 2008 and 2009. Soil bulk density, solid phase, liquid phase, and penetration resistance were not significantly different among the treatments. Organic treatment plots had greater organic matter, total nitrogen, potassium, and magnesium concentrations compared to control, and the nutrient concentrations were not consistently affected by the organic treatments. Microbial biomass nitrogen and carbon, dehydrogenase, acid-phosphatase, and chitinase activities overall increased from March to August. Organic treatments, especially compost containing with oil cake or chitin aicd, increased the microbial variables compared to control. CONCLUSION(s): All the organic treatments consistently stimulated soil biological activity. The consistent treatment effect, however, did not occur on the soil mineral nutrition as the trees actively taken up the nutrients during a growing season, which would have diminished treatment effects. Long-term study required for evaluating soil physical properties in a pear orchard.

Comparison of nutrition, anti-nutritional factors of rice straw and microbial composition in soil according to GM and non-GM rice field

  • Im, Seon yeong;Jeon, Young ji;Mun, Se young;Han, Kyu dong;Ahn, Tae young;Lee, Dong jin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.350-350
    • /
    • 2017
  • The study was conducted to evaluate differences of growth characteristics of rice cultivated in two different regions (Cheonan and Jeonju). It focused on nutritional composition and anti-nutritional factors of rice straw produced from 21 rice varieties including GM rice (Iksan 483). The range of general nutrition ingredient is that crude was 0.97 ~ 3.2 %, carbohydrate was 67.45 ~ 80.01 %, crude protein was 1.46 ~ 4.81 %, crude ash was 6.52 ~ 18.96 %, crude fiber was 25.77 ~ 40.02 %, NDF was 51.84 ~ 67.77 %, ADF was 27.11 ~ 40.44 %, calcium was 0.49 ~ 5.18 mg/g and phosphorous was 0.26 ~ 2.77 mg/g. The general nutritional contents of GM rice were included above range. The range of phytic acid of rice straws cultivated in Cheonan and Jeonju was 0 ~ 0.056 mg/ml and 0 ~ 0.059 mg/ml, respectively. The phytic acid content of GM was 0.033 mg/ml, which was in the range of the content of rice straw in Cheonan and Jeonju. The range of trypsin inhibitor of rice straws cultivated in Cheonan and Jeonju was 0.061 ~ 0.461 TIU/mg and 0 ~ 1.278 TIU/mg, respectively. The trypsin acid content of GM was 0.461 TIU/mg, which was in the range of the content of rice straw in Cheonan and Jeonju. In addition, we investigated microbial community from each soil sample by using metagenomics sequencing based on rRNA microbial diversity in order to inspect indirect changes of soil environment with cultivation of GM rice. Metagenomics analysis was carried out using soil samples cultivated with GM and non-GM rice for before transplanting, young panicle differentiation stage, heading stage, and ripening stage. Beta diversity of microbial community in both soil environments were calculated by using Bray-Curtis distance method and showed low value with an average of 0.24 (dissimilarity = 1). As a result, it was confirmed that the cultivation of GM does not give a significant effect on the change of microbial composition in soil. Therefore, Our study demonstrates that there is no difference in the composition of soil microorganism due to GM and non-GM rice.

  • PDF

Effects of Artificially Acidified Soils on the Growth and Nutrient Status of Pinus densiflora and Quercus acutissima Seedlings (토양산성화가 소나무, 상수리나무 묘목의 생장 및 영양상태에 미치는 영향)

  • Jin, Hyun-O;Bang, Sun-Hee;Lee, Choong-Hwa;Kim, Se-young
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.3
    • /
    • pp.266-273
    • /
    • 2008
  • The effects of soil acidification on the seedling growth and nutrition of Pinus densiflora and Quercus acutissima were investigated. The relationship between the seedling growth and molar (Ca+Mg+K)/Al ratio of in soil solution was examined. The results suggested that growth inhibition of seedling Pinus densiflora and Quercus acutissima was due to the low pH of soil solution, which was followed by leach of Al into soil solution, and decrease of essential elements, such as Ca in aerial pant of the seeding caused by the increase of Al concentration in subterranean pant of the seedlings. The level of growth inhibition was determined not only by Al concentration, but also by the balance of inorganic elements, Al, Ca, Mg and K. The growths of two species in total dry weight were clearly inhibited when molar (Ca+Mg+K)/Al ratio of the soil was lower than 6.0. The growth in dry weight, in the condition of the molar ratio was 0.8, was decreased 60% or 50% for the seedling of Pinus densiflora or Quercus acutissima respectively. It was concluded that the molar (Ca+Mg+K)/ Al ratio could be an important index for evaluation of the effects of soil acidification, due to acid deposition such as acid rain, on growth of trees and nutrition. And it might be a more useful indicator for evaluation of critical load of acid deposition on forest ecosystems.

Environmental Geochemistry and Heavy Matel Contamination of Ground and Surface Water, Soil and Sediment at the Kongjujuil Mine Creek, Korea (공주제일광산 수계에 분포하는 지하수, 지표수, 토양 및 퇴적물의 환경지구화학적 특성과 중금속 오염)

  • 이찬희
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.611-631
    • /
    • 1999
  • Enviromental geochemisty and heary metal contamination at the Kongjueil mine creek were underaken on the basis of physicohemical properties and mineralogy for various kinds of water (surface, mine and ground water),soil, precipitate and sediment collected of April and December in 1998. Hydrgeochemical composition of the water samples are characterized by relatively significant enricant of Ca+Na, alkiali ions $NO_3$ and Cl inground and surfore water, wheras the mine waters are relatively eneripheral water of the mining creek have the characteristics of the (Ca+Mg)-$(HCO_3+SO_4)$type. The pH of the mine water is high acidity (3.24)and high EC (613$\mu$S/cm)compared with those of surface and ground water. The range of $\delta$D and $\delta^{18}O$ values (relative to SMOW) in the waters are shpwn in -50.2 to -61.6% and -7.0 to -8.6$\textperthousand$(d value=5.8 to 8.7). Using computer program, saturation index of albite, calcite, dolomite in mine water are nearly saturated. The gibbiste, kaolinite and smectite are superaturated in the surface and ground water, respectively. Calculated water-mineral reaction and stabilities suggest that weathing of silicate minerals may be stable kaolinite owing to the continuous water-rock reaction. Geochemical modeling showed that mostly toxic heavy metals may exist larfely in the from of metal-sulfate $(MSO_4\;^2)$and free metal $(M^{2+})$ in nmine water. These metals in the ground and surface water could be formed of $CO_3$ and OH complex ions. The average enrichment indices of water samples are 2.72 of the groundwater, 2.26 of the surface water and 14.15 of the acid mine water, normalizing by surface water composition at the non-mining creek, repectively. Characteristics of some major, minor and rate earth elements (Al/Na, K/Na, V/Ni, Cr/V, Ni/Co, La/Ce, Th/Yb, $La_N/Yb_N$, Co/Th, La/Sc and Sc/Th) in soil and sediment are revealed a narrow range and homogeneous compositions may be explained by acidic to intermediate igneous rocks. And these suggested that sediment source of host granitic gneiss colud be due to rocks of high grade metamorphism originated by sedimentary rocks. Maximum concentrations of environmentally toxic elements in sediment and soil are Fe=53.80 wt.% As=660, Cd=4, Cr=175, Cu=158, Mn=1010, Pb=2933, Sb=4 and Zn=3740 ppm, and extremely high concentrations are found are found in the subsurface soil near the ore dump and precipitates. Normalizing by composition of host granitic gneiss, the average enerichment indices are 3.72 of the sediments, 3.48 of the soils, 10.40 of the precipitates of acid mine drainage and 6.25 of the soils near the main adit. The level of enerichment was very severe in mining drainage sediments, while it was not so great in the soils. mineral composition of soil and sediment near the mining area were partly variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. reddish variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. Reddish brown precipitation mineral in the acid mine drainage identifies by schwertmanite. From the separated mineralgy, soil and sediment are composed of some pyrite, arsenopyite, chalcopyrite, sphalerite, galena, malachite, goethite and various kinds of hydroxied minerals.

  • PDF

Changes of Some Organic Acids in the Hydrolysates of Decomposing Litters of Wild Grasses and Tree Leaves (부숙과정중(腐熟過程中) 낙엽류(落葉類) 가수분해물(加水分解物)의 유기산함량(有機酸含量) 변화(變化))

  • Kim, Jeong-Je;Choi, Kang-Soon;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.407-410
    • /
    • 1992
  • Changes in the concentrations of six low-molecular-weight organic acids extracted from hydrolysates of plant residues undergoing decomposition for 90 days under the laboratory condition were investigated. 1. Litters of deciduous and coniferous trees and wild grass cuttings were sampled for the study and concentrations of formic, acetic, succinic, tartaric, malic and citric acids were determined. The concentration of malic acid were negligible. 2. In the wild grass cuttings, the total concentration of low-molecular-weight organic acids decreased with the passage of decomposition. Monocarboxylic acids, I. e., formic and acetic acids, predominated over dicarboxylic and tricarboxylic acids. Formic and acetic acids appeared to be compensatory for each other. Concentration of citric acid increased at a remarkable rate. 3. The total concentration of organic acids in the hydrolysates of deciduous litter was shown to increase. The concentration of monocarboxylic acids was significantly higher in the end of the period of decomposition. Here again a compensatory relationship was observed between concentrations of formic and acetic acids. 4. There was comparatively little change exhibited during the period of experiment concerning the concentrations of organic acids from hydrolysates of decomposing coniferous litter. In contrast with the others, however, the concentration of succinic acid, a dicarboxylic acid, maintained the highest level.

  • PDF

Effects of a Chelate (DTPA) on Cucumber Growth and Soil Chemical Properties in Nutrient-accumulated Soil of Polytunnel Greenhouse

  • Kim, Myung Sook;Kim, Yoo Hak;Kang, Seong Soo;Kong, Myung Suk;Hyun, Byung Keun;Lee, Chang Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.665-672
    • /
    • 2013
  • This study was conducted to evaluate the effects of a chelating agent on cucumber growth and changes in soil nutrients availability in polytunnel greenhouse fields. Diethylene triamine penta acetic acid (DTPA) was selected as a chelating agent. Two experiments were carried out as follows: i) For field experiment in the autumn season of 2010, each plot was treated by varying the concentration and the number of times being applied with DTPA; [DTPA (0.5 mM, 1 time/3 months), DTPA (0.06 mM, 1 time/1 week), DTPA (0.13 mM, 1 time/2 weeks), DTPA (0.06 mM, 1 time/1 week)+N]. Conventional practice was also investigated. ii) In the spring and summer seasons of 2011, each plot was treated by varying the concentration (0, 0.06, 0.13, 0.19 mM) of DTPA, chemical fertilizers (NPK), and combination of chemical fertilizers and DTPA 0.06 mM. The fruit yields of cucumber and soil chemical properties had no significant differences between treatments. However, in the spring season of 2011, DTPA 0.06 mM plot added 1 time per 2 weeks increased the yield of cucumber, but caused the reduction of yield in next cultivation season. This result showed that excess use of DTPA can cause the damage of crop growth. The inorgainc contents such as Ca and Mg absorbed by cucumber plant had significant differences between DTPA 0.19 mM (2 times/1 week) and fertilizers plus DTPA treatments [DTPA 0.06 mM (2 times/1 week) + 1/2 NPK, DTPA 0.06 mM (2 times/1 week) + NPK]. The input cost of fertilizers was saved when the concentration and the number of times added with DTPA was 0.06 mM and 1 time a week, respectively. This treatment used 67% less of applied fertilizers cost than the plot of conventional practice did. Thus, this research suggested that the application of DTPA 0.06 mM by 1 time a week can be effective for sustainability of crop production and reduction of fertilizers usage in polytunnel greenhouse.