• Title/Summary/Keyword: Acid Soil

Search Result 1,953, Processing Time 0.032 seconds

Utilization of Industrial Wastes as Fertilizer (산업폐기물(産業廢棄物)의 비료화(肥料化))

  • Shin, Jae-Sung;Han, Ki-Hak
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.68-79
    • /
    • 1984
  • An increased population and rapidly expanding industrial development have led to enormous amounts of various domestic and industrial wastes. The proper disposal of ever-increasing wastes is a growing global problem. Land treatment is one of the rational approaches that are environmentally safe and economically practical. It has long been practised in many sites. Recycling of industrial wastes on agricultural land can provide better possible means for maintaining environmental quality and utilizing waste-resources. Even though industrial wastes are beneficial as soil amendment and fertilizer, they have some limitation on land application because of wide variability as well as physicochemical problem in their composition. A direct application of solid and liquid wastes on land is being practised in Korea and some experimental results are presented. The direct application of fermentation waste on rice resulted in a 6 percent yield increase. Another organic residue from glutamic acid fermentation is widely used not only as a direct application as a liquid fertilizer but also for a raw material of organic compound fertilizer. These wastes are much promising as sources of plant nutrients, since they have large amounts of nutrients, especially nitrogen with few toxic metals. On the other hand, fertilizers developed from inorganic industrial wastes include calcium silicate, calcium sulfate and ammonium sulfate. The calcium silicate fertilizer simply produced from slag, by-product of iron and steel manufacturing plant is one of the most successful example of the conversion of wastes to fertilizer and slag production capacity totals to over three million MT/year. About 200,000 MT of calcium silicate fertilizer is currently applied in the paddy rice every year. Calcium sulfate, a waste from the wet phosphoric acid process is to some extent used as a filler of compound fertilizers but quite large quantites are directly applied for the reclamation of tidal flat.

  • PDF

Metaproteomics in Microbial Ecology (메타프로테오믹스의 미생물생태학적 응용)

  • Kim, Jong-Shik;Woo, Jung-Hee;Kim, Jun-Tae;Park, Nyun-Ho;Kim, Choong-Gon
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • New technologies are providing unprecedented knowledge into microbial community structure and functions. Even though nucleic acid based approaches provide a lot of information, metaproteomics could provide a high-resolution representation of genotypic and phenotypic traits of distinct microbial communities. Analyzing the metagenome from different microbial ecosystems, metaproteomics has been applied to seawater, human guts, activated sludge, acid mine drainage biofilm, and soil. Although these studies employed different approaches, they elucidated that metaproteomics could provide a link among microbial community structure, function, physiology, interaction, ecology, and evolution. These approaches are reviewed here to help gain insights into the function of microbial community in ecosystems.

EFFECT OF GIBBERELLIN ON THE GROWTH AND INTERNAL COMPONENTS OF ASTRAGALUS SINICUS L. (자운영의 생육 및 성분에 미치는 지베레린의 영향)

  • CHA, Jong Whan
    • Journal of Plant Biology
    • /
    • v.5 no.4
    • /
    • pp.1-5
    • /
    • 1962
  • CHA, Jong Whan (Dept. of Biology, College of Education, Seoul National University). Effect of gibberallin on the growth and internal componsents of Astragalus sinicus L. Kor. Jour. Bot. V(4) : 1-5, 1962. The effect of GA on the growth as well as on the internal components of the leaves of Astragalus sinicus L. under the soil culture was investigated. The result has indicated that small variation in the relative concentration of GA treated on the leaves shows a marked influence on the internal components of the plants. The increase of growth was associated with increasing intensity of GA. Chlorophyll and carotene contents in the leaves were depressed with increasing concentration of GA. It was noticed that the growth was pomoted with the decrease of the contents of chlorophyll and carotene. In contrast the aacorbic acid in the leaves treated with GA decreased in proportion to the degree of the concentration of GA. Carotens content varied with chlorophyll, although the ratio of chlorophyll to carotene was not so high as the results obtained by Beck and Redman. Chlorophyll and ascorbic acid values with respect to growth differed greatly during the two experimental periods. The chlorophyll content was found highly significant in this experimental periods. The chlorophyll content was found highly significant in this experiment. As the concentration of GA was increased, it was noticed that there was a reduction of anthocyanin, sucrose, and reducing sugar contents. The anthocyanin content was not so high in this study as in the results obtained from the corn by Jacob Straus.

  • PDF

Purification and Characterization of Cell Wall Hydrolase from Alkalophilic Bacillus mutanolyticus YU5215

  • OHK, SEUNG-HO;NAM, SEUNG-WOO;KIM, JIN-MAN;YOO, YUN-JUNG;BAI, DONG-HOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1142-1149
    • /
    • 2004
  • Streptococcus mutans has the capacity of inducing dental caries. Thus, to develop a novel way of preventing dental caries, a cell wall hydrolase-producing strain was isolated and its characteristics were investigated. Among 200 alkalophilic strains isolated from soil, 8 strains exhibited lytic activities against Streptococcus mutans. However, strain YU5215 with the highest cell wall hydrolase activity was selected for further study. Strain YU5215 was identified as a novel strain of Bacillus based on analyzing its 16S rDNA sequence and Bergey's Manual of Systematic Bacteriology, and thus designated as Bacillus mutanolyticus YU5215. The optimal conditions for the production of the cell wall hydrolase from Bacillus mutanolyticus YU5215 consisted of glucose ($0.8\%$), yeast extract ($1.2\%$), polypeptone ($0.5\%$), $K_{2}HPO_{4}\;(0.1\%$), $MgSO_{4}{\cdot}7H_{2}O$ ($0.02\%$), and $Na_{2}CO_{3}\;(1.0\%$) at pH 10.0. Bacillus mutanolyticus YU5215 was cultured at 30^{circ}C for 72 h to produce the cell wall hydrolase, which was then purified by acetone precipitation and CM-agarose column chromatography. The molecular weight of the lytic enzyme was determined as 22,700 Da by SDS-PAGE. When the cell wall peptidoglycan of Streptococcus mutans was digested with the lytic enzyme, no increase in the reducing sugars was observed, while the free amino acids increased, indicating that the lytic enzyme had an endopeptidase-like property. The amino terminus of the cell wall peptidoglycan digested by the lytic enzyme was determined as a glutamic acid, while the lytic site of the lytic enzyme in the Streptococcus mutans peptidoglycan was identified as the peptide linkage of L-Ala and D-Glu.

Production of Biopolymer Flocculant by Bacillus subtilis TB11

  • Yoon, Sang-Hong;Song, Jae-Kyeung;Go, Seung-Joo;Ryu, Jin-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.606-612
    • /
    • 1998
  • A microbial flocculant-producing gram-positive bacterium, strain TE11, was isolated from soil samples, and was identified as Bacillus subtilis by using the Midi system, the Biolog system, 16S rDNA sequence analysis, and some physiological and morphological characteristics. The maximum flocculant capsular biopolymer of TE11 strain (BCP, 4.9mg/ml) was obtained when it was grown in GA broth medium containing 3% glutamic acid, 2% glycerol, 0.5% citric acid, 0.5% $NH_4$Cl, 0.05% $MgSO_4.7H_2O,\; 0.05%\;K_2HPO_4\;,\; and\; 0.004%\; FeC1_3. 6H_2O,\; pH 7.2,\; at\; 30^{\circ}C$ for 70 h with shaking. When glycerol was used as an additional carbon source in the GA medium, TE11 produced only flocculant BCP without any by-product. The flocculant (BCP) was found to aggregate suspended kaolin and activated charcoal powder without cations, and its flocculating activity was significantly enhanced by the addition of bivalent cations such as $Ca^{2+}.Zn^{2},\; and\; Mn^{2+}$. The flocculation activity by addition of $Ca^{2+}$ was high in an acidic pH 4.0. In the case of $Zn^{2+}$, high flocculating activity remained without significant loss in the broad range of pH 4.0 to 9.0.

  • PDF

Characterization of Alkaline Serine Proteases Secreted from the Coryneform Bacterium TU-19

  • Kang, Sun-Chul;Park, Sang-Gyu;Choi, Myong-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.639-644
    • /
    • 1998
  • Extracellular serine proteases were isolated from a soil bacterium, alkalophilic coryneform bacterium TU-19, which have been grown in a liquid medium optimized at 3$0^{\circ}C$ and pH 10.0. Three different sizes, 120 kDa (protease I), 80 kDa (protease II), and 45 kDa (protease III), of serine pro teases were purified using Sephadex G-150 and QAE-Sephadex chromatography (Kang et al. 1995. Agric. Chem Biotech. 38: 534-540). SDS-PAGE showed that the 120 kDa protease was degraded into the 80 kDa protease in 20 mM Tris-HCI (pH 8.0) buffer solution. This degradation was enhanced in the presence of 0.5 M NaCl and 5 mM EDTA, but was inhibited in the presence of 5 mM $CaCl_2$. These results indicated that the $Ca^{2+}$ ion seems to stabilize the 120 kDa protease like other proteases derived from Bacillus species. The $NH_2$-terminal amino acid sequences of the 10 residues of both proteases were completely identical: Met-Asn-Thr-Gln-Asn-Ser-Phe-Leu-Ile-Lys. In contrast to this, the 80 kDa protease has 1.5 times higher specific activity than the 120 kDa protease does (Kang et al. 1995. Agric. Chern. Biotech. 38: 534-540). Therefore the C-terminal of the 120 kDa protease seems to be autolyzed to the 80 kDa protease but this autolysis did not decrease the protease activity. Optimum pH and temperature of both 80 kDa and 120 kDa proteases were pH 10.5 and $45^{\circ}C$, respectively, and pH and thermal stability were almost identical. Several divalent ions except the $Fe^{2+}$ ion showed similar effects on activities of both proteases, which are similarly resistant to three different detergents.

  • PDF

Isolation of a Novel Gellan-Depolymerizing Bacillus sp. Strain YJ-1

  • Jung, Yu-Jin;Park, Cheon-Seok;Lee, Hyeon-Gyu;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1868-1873
    • /
    • 2006
  • A novel microorganism that could degrade high molecular weight gellan was screened and isolated from soil. On gellan plate, the microorganism grew well and completely liquefied the plate. The gellan-degrading microorganism was isolated by pure culture on glucose and nutrient agar medium afterwards. The 16S rDNA sequence analysis and biochemical tests using an API 50CHB/20E kit revealed that the strain belonged to Bacillus sp. The isolate, named as Bacillus sp. YJ-1, showed optimum gellan-degrading activity in 0.5% gellan medium at pH 7.5 and 37$^{\circ}C$. The activity was measured and evaluated by the thiobarbituric acid and thin-layer chromatography method. Mass spectrometry revealed that the major gellan.. depolymerized product was an unsaturated tetrasaccharide consisting of $\Delta$4,5-glucuronic acid-(1$\rightarrow$4 )-$\beta$-D-glucose-(1$\rightarrow$4)- $\alpha$-L-rhamnose-(1$\rightarrow$3)-$\beta$-D-glucose, which is a dehydrated repeating unit of gellan, thus the enzyme was identified as gellan lyase. When the gellan was present in the medium, the gellan-degrading activity was much higher than that in glucose-grown cells. These results indicate that in the presence of gellan, Bacillus sp. YJ-1 is able to metabolize the gellan by inducing gellan-degrading enzymes that can degrade gellan into small molecular weight oligosaccharides, and then the gellan. depolymerized products are taken up by the cells and utilized by intracellular enzymes.

Antibiotic Production of Pseudomonas otitidis PS and Mode of Action (Pseudomonas otitidis PS 균주의 항생물질 생산과 작용 기작)

  • Ahn, Kyung-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.40-44
    • /
    • 2018
  • An isolate capable of inhibiting the growth of gram-positive bacteria was obtained from the soil of Mushim stream, Cheongju. The isolate was identified as Pseudomonas otitidis PS by 16S rRNA gene sequence analysis. P. otitidis PS produced antibiotics as a secondary metabolite when cultured in 1% soybean meal with 0.5% glucose. The maximum yield was about 0.1%. The antibiotic substance of P. otitidis PS extracted using ethyl acetate displayed a minimum inhibitory concentration of $2{\mu}g/ml$ for Staphylococcus aureus KCTC 1261. The antibiotic substance produced an orange halo on chrome azurol S agar due to siderophore activity. Growth inhibition was decreased when the iron was depleted. Since the antibiotic activity was lost upon the addition of the reducing agent ascorbic acid or during anaerobic culture, it was considered that antibiotic of P. otitidis PS strain exerts its bactericidal effect by the generation of reactive oxygen species.

Analysis of organic Residues from Open-Air Hearths at Nambuk-dong, Yongyu-do (용유도 남북동유적 야외노지에 대한 잔존지방분석)

  • Yun, Eun-Young;Yu, Hei-Sun;Kim, Gyu-Ho
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.31-42
    • /
    • 2007
  • The archaeological site of Nambuk-dong, Yongyu Island, Incheon which goes back to the Neolithic making it difficult to identify character of site, To get information for identifying utility and character of Open-Air Hearths within the finds, an organic residues analysis was conducted on soil and stone sample, sterol was analysis to determine the originality of archaeological sample, then percentage of fatty acid was identify the species of sample. As a result, it is assumed that No. 9, 10, 12 finds once had shellfish-related materials remain, No. 32 find seemed to have animal materials, No. 42, 43 finds were related to plant. In conclusion, it seems that open-air hearths of Yongyu Island had utility mainly related to making seafood.

  • PDF

Molecular breeding of herbicide resistant transgenic plants with bromoxynil specific nitrilase gene (Bromoxynil 특이성 nitrilase 유전자를 이용한 제초제 저항성 형질 전환 식물의 분자육종)

  • Min, Bok-Kee;Park, Eun-Sung;Park, Yearn-Hung;Song, Jae-Young;Lee, Se-Yong
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.248-254
    • /
    • 1994
  • Bromoxynil is an antidicot herbicide widely used on cereal crops and has a short half life in the soil. A bxn gene, encoding a specific nitrilase that converts bromoxynil to its primary metabolite 3,5-dibromo-4-hydroxybenzoic acid, was inserted in plant binary vector pGA482, and then introduced into tobacco and lettuce plants via Agrobacterium mediated leaf-disc transformation method. Transgenic plants with the bxn gene were selected by kanamycin and regenerated to whole plants. The regenerated transgenic plants were determined level of expression of bxn gene by Northern blot analysis. Leaf-disc analysis and pot-assay confirmed that the transgenic tobacco and lettuce plants were resistant to high doses of bromoxynil.

  • PDF