• Title/Summary/Keyword: Achievable throughput scaling law

Search Result 2, Processing Time 0.015 seconds

Throughput Scaling Law of Hybrid Erasure Networks Based on Physical Model (물리적 모델 기반 혼합 소거 네트워크의 용량 스케일링 법칙)

  • Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.57-62
    • /
    • 2014
  • The benefits of infrastructure support are shown by analyzing a throughput scaling law of an erasure network in which multiple relay stations (RSs) are regularly placed. Based on suitably modeling erasure probabilities under the assumed network, we show our achievable network throughput in the hybrid erasure network. More specifically, we use two types of physical models, a exponential decay model and a polynomial decay model. Then, we analyze our achievable throughput using two existing schemes including multi-hop transmissions with and without help of RSs. Our result indicates that for both physical models, the derived throughput scaling law depends on the number of nodes and the number of RSs.

On the System Modeling and Capacity Scaling Law in Underwater Ad Hoc Networks (수중 애드 혹 네트워크에서의 시스템 모델링 및 용량 스케일링 법칙에 대하여)

  • Shin, Won-Yong;Kim, A-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.422-428
    • /
    • 2011
  • In this paper, we introduce system and channel modeling for an underwater ad hoc acoustic network with n regularly located nodes, and then analyze capacity scaling laws based on the model. A narrow-band model is assumed where the carrier frequency is allowed to scale as a function of n. In the network, we characterize in attenuation parameter that depends on the frequency scaling as well as the transmission distance. A cut-set upper bound on the throughput scaling is then derived in extended networks having unit node density. Our result indicates that the upper bound is inversely proportional to the attenuation parameter, thus resulting in a power-limited network. Furthermore, we describe an achievable scheme based on the simple nearest-neighbor multi-hop (MH) transmission. It is shown under extended networks that the MH scheme is order-optimal for all the operating regimes expressed as functions of the attenuation parameter.