• Title/Summary/Keyword: Acetyl-CoA carboxylase

Search Result 185, Processing Time 0.021 seconds

Inhibitory Effect of the Ethanol Extract of Rudbeckia laciniata var. hortensis Bailey on Adipocyte Differentiation in 3T3-L1 Cells (겹삼잎국화 에탄올 추출물의 지방세포 분화 억제 효과)

  • Nam, Gun He;Wee, Ji-Hyang;Kim, Sang Yung;Baek, Ji-Young;Kim, Young Min
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1152-1158
    • /
    • 2019
  • Rudbeckia laciniata var. hortensis Bailey is used in home remedy for colic and gastritis in South Korea. Although Rudbeckia laciniata var. hortensis Bailey is used extensively for home remedies, no single study on its efficacy exists. In this study, we investigated the anti-obesity effects of Rudbeckia laciniata var. hortensis Bailey. The anti-obesity effect of a 70% ethanol extract from Rudbeckia laciniata var. hortensis Bailey on the differentiation of 3T3-L1 pre-adipocytes to adipocytes was investigated with an Oil Red O assay, western blot analysis, and mRNA analysis. Compared to the control (only treated with DM), the 70% ethanol extract of Rudbeckia laciniata var. hortensis Bailey significantly inhibited adipocyte differentiation and intracellular triglyceride (TG) levels at a concentration of $100{\mu}g/ml$. To determine how the TG content was reduced, we measured the level of protein and mRNA expression of obesityrelated agents, such as peroxisome proliferators-activated receptor ${\gamma}$ ($PPAR{\gamma}$), CCAAT/enhancer- binding protein ${\alpha}$ ($C/EBP{\alpha}$), AMP-activated protein kinase (AMPK) phosphorylation, LPL, and FAS. As a result, the 70% ethanol extract of Rudbeckia laciniata var. hortensis Bailey significantly increased the expression of AMPK and decreased the expression of genes related to adipogenesis and fat storage, such as $PPAR{\gamma}$, $C/EBP{\alpha}$, LPL, and FAS.

Probiotics Increase Intramuscular Fat and Improve the Composition of Fatty Acids in Sunit Sheep through the Adenosine 5'-Monophosphate-Activated Protein Kinase (AMPK) Signaling Pathway

  • Yue Zhang;Duo Yao;Huan Huang;Min Zhang;Lina Sun;Lin Su;LiHua Zhao;Yueying Guo;Ye Jin
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.805-825
    • /
    • 2023
  • This experiment aims to investigate the impact of probiotic feed on growth performance, carcass traits, plasma lipid biochemical parameters, intramuscular fat and triglyceride content, fatty acid composition, mRNA expression levels of genes related to lipid metabolism, and the activity of the enzyme in Sunit sheep. In this experiment, 12 of 96 randomly selected Sunit sheep were assigned to receive the basic diet or the basic diet supplemented with probiotics. The results showed that supplementation with probiotics significantly increased the loin eye area, and decreased plasma triglycerides and free fatty acids, increasing the content of intramuscular fat and triglycerides in the muscle and improving the composition of the fatty acids. The inclusion of probiotics in the diet reduced the expression of adenosine 5'-monophosphate-activated protein kinase alpha 2 (AMPKα2) mRNA and carnitine palmitoyltransferase 1B (CPT1B) mRNA, while increasing the expression of acetyl-CoA carboxylase alpha (ACCα) mRNA, sterol regulatory element-binding protein-1c (SREBP-1c) mRNA, fatty acid synthase mRNA, and stearoyl-CoA desaturase 1 mRNA. The results of this study indicate that supplementation with probiotics can regulate fat deposition and improves the composition of fatty acids in Sunit sheep through the signaling pathways AMPK-ACC-CPT1B and AMPK-SREBP-1c. This regulatory mechanism leads to an increase in intramuscular fat content, a restructuring of muscle composition of the fatty acids, and an enhancement of the nutritional value of meat. These findings contribute to a better understanding of the food science of animal resources and provide valuable references for the production of meat of higher nutritional value.

Effects of Fattening Period on Growth Performance, Carcass Characteristics and Lipogenic Gene Expression in Hanwoo Steers

  • Kwon, Eung Gi;Park, Byung Ki;Kim, Hyeong Cheol;Cho, Young Moo;Kim, Tae Il;Chang, Sun Sik;Oh, Young Kyoon;Kim, Nam Kuk;Kim, Jun Ho;Kim, Young Jun;Kim, Eun-Jib;Im, Seok Ki;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.12
    • /
    • pp.1654-1660
    • /
    • 2009
  • This study was conducted to investigate the effects of different fattening periods i.e. 25, 27 and 29 months of age (25 mo, 27 mo and 29 mo), on feed consumption, body weight gain, carcass parameters, and lipogenic gene expression in 45 Korean native steers (Hanwoo). Daily DM intake was higher in steers on 29 mo compared with those on 25 mo or 27 mo. Daily body weight gain was higher in steers on 25 mo compared with those on 27 mo or 29 mo during fattening and overall experimental periods. Therefore, feed conversion ratio was lower in 25 mo compared with 27 mo or 29 mo during the fattening and whole experimental periods. As expected, slaughter and carcass weights were higher in the order of 29 mo>27 mo>25 mo. Carcass yield grade was relatively lower in 29 mo reflecting higher back fat thickness compared with other treatments, while carcass quality grade was not largely influenced by the treatments. By investigation with an ultra-sound scanning technique, the marbling score was significantly and numerically higher in 25 mo compared with 27 mo or 29 mo. The mRNA levels of stearoyl-CoA desaturase (SCD) gene were gradually increased in the late fattening stages (p<0.01) and mRNA of acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACL) and glucose transporter 4 (GLUT4) gene were highly expressed in 29 mo compared with 25 mo and 27 mo (p<0.05). However, gene expressions of adipocyte fatty acid binding protein 4 (FABP4) and lipoprotein lipase (LPL) were not significantly different among the treatments. Thus the present results indicated that different fattening period has no major effect on carcass characteristics, although 25 mo had a lower carcass weight compared with 27 mo or 29 mo.

Effect of all-trans retinoic acid on casein and fatty acid synthesis in MAC-T cells

  • Liao, Xian-Dong;Zhou, Chang-Hai;Zhang, Jing;Shen, Jing-Lin;Wang, Ya-Jing;Jin, Yong-Cheng;Li, Sheng-Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1012-1022
    • /
    • 2020
  • Objective: Caseins and fatty acids of milk are synthesized and secreted by the epithelial cells of the mammary gland. All-trans retinoic acid (ATRA), an active metabolite of vitamin A, has been shown to promote mammary development. This study was conducted to determine the effect of ATRA on casein synthesis and fatty acid composition in MAC-T cells. Methods: MAC-T cells were allowed to differentiate for 4 d, treated with ATRA (0, 1.0, 1.5, and 2.0 μM), and incubated for 3 d. We analyzed the fatty acid composition, the mRNA expression of casein and fatty acid synthesis-related genes, and the phosphorylation of casein synthesis-related proteins of MAC-T cells by gas chromatography, quantitative polymerase chain reaction, and western blotting, respectively. Results: In MAC-T cells, ATRA increased the mRNA levels of αS1-casein and β-casein, janus kinase 2 (JAK2) and E74-like factor 5 of the signal transducer and activator of transcription 5 β (STAT5-β) pathway, ribosomal protein S6 kinase beta-1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 of the mammalian target of rapamycin (mTOR) pathway, inhibited the mRNA expression of phosphoinositide 3-kinase and eukaryotic initiation factor 4E of the mTOR pathway, and promoted the phosphorylation of STAT5-β and S6K1 proteins. Additionally, ATRA increased the de novo synthesis of fatty acids, reduced the content of long-chain fatty acids, the ratio of monounsaturated fatty acids to saturated fatty acids (SFA), the ratio of polyunsaturated fatty acids (PUFA) to SFA, and the ratio of ω-6 to ω-3 PUFA. The mRNA levels of acetyl-CoA carboxylase 1, fatty acid synthase, lipoprotein lipase, stearoyl-CoA desaturase, peroxisome proliferator-activated receptor gamma, and sterol regulatory element-binding protein 1 (SREBP1) were enhanced by ATRA. Conclusion: ATRA promotes the synthesis of casein by regulating JAK2/STAT5 pathway and downstream mTOR signaling pathway, and it improves the fatty acid composition of MAC-T cells by regulating SREBP1-related genes.

The Stimulatory Effect of Essential Fatty Acids on Glucose Uptake Involves Both Akt and AMPK Activation in C2C12 Skeletal Muscle Cells

  • Park, So Yeon;Kim, Min Hye;Ahn, Joung Hoon;Lee, Su Jin;Lee, Jong Ho;Eum, Won Sik;Choi, Soo Young;Kwon, Hyeok Yil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.255-261
    • /
    • 2014
  • Essential fatty acid (EFA) is known to be required for the body to function normally and healthily. However, the effect of EFA on glucose uptake in skeletal muscle has not yet been fully investigated. In this study, we examined the effect of two EFAs, linoleic acid (LA) and ${\alpha}$-linolenic acid (ALA), on glucose uptake of C2C12 skeletal muscle cells and investigated the mechanism underlying the stimulatory effect of polyunsaturated EFAs in comparison with monounsaturated oleic acid (OA). In palmitic acid (PA)-induced insulin resistant cells, the co-treatment of EFAs and OA with PA almost restored the PA-induced decrease in the basal and insulin-stimulated 2-NBDG (fluorescent D-glucose analogue) uptake, respectively. Two EFAs and OA significantly protected PA-induced suppression of insulin signaling, respectively, which was confirmed by the increased levels of Akt phosphorylation and serine/threonine kinases ($PKC{\theta}$ and JNK) dephosphorylation in the western blot analysis. In PA-untreated, control cells, the treatment of $500{\mu}M$ EFA significantly stimulated 2-NBDG uptake, whereas OA did not. Phosphorylation of AMP-activated protein kinase (AMPK) and one of its downstream molecules, acetyl-CoA carboxylase (ACC) was markedly induced by EFA, but not OA. In addition, EFA-stimulated 2-NBDG uptake was significantly inhibited by the pre-treatment of a specific AMPK inhibitor, adenine 9-${\beta}$-D-arabinofuranoside (araA). These data suggest that the restoration of suppressed insulin signaling at PA-induced insulin resistant condition and AMPK activation are involved at least in the stimulatory effect of EFA on glucose uptake in C2C12 skeletal muscle cells.

Anti-adipogenic Effects of the Water Extracts of Defatted Green Tea Seed Cake (녹차씨 압착박 열수 추출물의 지방세포 분화 억제 효과)

  • Wee, Ji-Hyang;Sung, Hea Mi;Jung, Kyung Ok;Kim, Suk Jung;Shin, Yu-Rim;Park, Ju-Hyun;Kim, Jong-Deog
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.525-533
    • /
    • 2015
  • The effect of the hot water extract of defatted green tea seed cake (GTSE) on lipid metabolism and the underlying mechanisms of lipolysis in mature 3T3-L1 adipocytes were investigated. In this study, we found that the naringenin content of GTSE was 5.5 mg/g; however, catechins were not detected. The intracellular lipid droplets were stained with Oil Red O dye and quantified. Compared to the control, lipid accumulation was significantly decreased by 52%, and intracellular triglyceride (TG) level was reduced by 33% after treatment with GTSE at a concentration of $40{\mu}g/mL$. To determine the mechanism of reduction in TG content, we determined the level of fatty acid synthase (FAS), phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), and acetyl-coenzyme A carboxylase (ACC) in the cell model. Incubation of the 3T3-L1 adipocytes with GTSE stimulated AMPK and ACC phosphorylation in a dose-dependent manner, and decreased the expression of FAS.

Effects of Steaming Process on Liriopis Tuber to Antioxidant Activities and Hyperlipidemia Induced Rats. (맥문동(麥門冬)의 증숙(蒸熟)에 따른 항산화 효능 및 고지혈증 유발 흰쥐에 대한 효능 연구)

  • Ku, Garam;Lee, Hyun-In;Kim, SuJi;Shin, Mi-Rae;Lee, AhReum;Park, Hae-Jin;Roh, Seong-Soo;Seo, Young Bae
    • The Korea Journal of Herbology
    • /
    • v.33 no.5
    • /
    • pp.89-103
    • /
    • 2018
  • Objectives : This study is aimed to compare the changes in Antioxidative capacity of Liriopis Tuber by steaming process and to compare the effects in hyperlipidemia induced rats fed high cholesterol diet between Simvastatin and Liriopis Tuber by steaming process. Methods : The SD rats were divided into six groups: normal diet (Nor), high cholesterol diet (Veh), high cholesterol diet plus Simvastatin 5 mg/kg (Sim), high cholesterol diet plus LT0 extract 200 mg/kg (LT0), high cholesterol diet plus LT6 extract 200 mg/kg (LT6) and high cholesterol diet plus LT9 extract 200 mg/kg (LT9). We compared the total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol (LDL) contents and reactive oxygen species (ROS) from each serums. Protein expression in liver tissues related to antioxidant and cholesterol was analyzed. Results : The Antioxidant activity of Liriopis Tuber increased by steaming process. In vivo, TC, TG, LDL-c, atherogenic index (AI) and cardiac risk factor (CRF) decreased and HDL-c increased with increasing steaming frequency. aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and blood urea nitrogen (BUN) decreased with increasing steaming frequency. ROS decreased only in LT9, and SOD, catalase and glutathione peroxidase (GPx) increased with increasing steaming frequency. phospho-AMP-activated protein kinase (p-AMPK) increased and sterol regulatory element-binding protein 2 (SREBP-2), Phospho-Acetyl-CoA Carboxylase (p-ACC) and HMG-CoA reductase (HMGCR) decreased with increasing steaming frequency. Liver staining showed a decrease in hepatic fat accumulation of LT9. LT9 showed significant results in all experiments. Conclusions : LT9 showed significance of anti-lipid effect and improved fatty liver of hyperlipemia induced rats fed on high cholesterol diet, In conclusion, LP9 can be effectively used for the treatment of hyperlipidemia.

Research on Anti-lipogenic Effect and Underlying Mechanism of Laminaria japonica on Experimental Cellular Model of Non-alcoholic Fatty Liver Disease (비알코올성 지방간 세포 모델에서 곤포의 효능과 기전 연구)

  • Kim, So-Yeon;Kwon, Jung-Nam;Lee, In;Hong, Jin-Woo;Choi, Jun-Yong;Park, Seong-Ha;Kwun, Min-Jung;Joo, Myung-Soo;Han, Chang-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.2
    • /
    • pp.175-183
    • /
    • 2014
  • Objectives : We tried to uncover the anti-lipogenic effect and underlying mechanism of Laminaria japonica on an experimental cellular model of non-alcoholic fatty liver disease. Methods : Ethanol extract of Laminaria japonica (LJ) was prepared. Intracellular lipid content of palmitate-treated HepG2 cells was evaluated with or without LJ treatment. We measured the effects of LJ on liver X receptor ${\alpha}$ ($LXR{\alpha}$) and sterol regulatory element-binding transcription factor-1c (SREBP-1c) expression, transcription level of lipogenic genes, including acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and nuclear factor erythroid 2-related factor 2 (Nrf2) activation in HepG2 cells. Results : LJ markedly attenuated palmitate-induced intracellular lipid accumulation in HepG2 cells. LJ suppressed $LXR{\alpha}$-dependent SREBP-1c activation, and SREBP-1c mediated induction of ACC, FAS, and SCD-1. Furthermore, LJ activated Nrf2, which plays an important cytoprotective role in non-alcoholic fatty liver disease. Conclusions : Our study suggests that LJ has the potential to alleviate hepatic lipid accumulation, and this effect was mediated by inhibiting the $LXR{\alpha}$-SREBP-1c pathway that leads to hepatic steatosis. In addition, the anti-lipogenic potential may, at least in part, be associated with activation of Nrf2.

Anti-diabetic activities of catalpol in db/db mice

  • Bao, Qinwen;Shen, Xiaozhu;Qian, Li;Gong, Chen;Nie, Maoxiao;Dong, Yan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.153-160
    • /
    • 2016
  • The objective was to investigate the hypoglycemic action of catalpol in spontaneous diabetes db/db mice. 40 db/db mice were randomly divided into five groups: model control gourp; db/db plus catalpol 40, 80, 120 mg/kg body wt. groups and db/db plus metformin 250 mg/kg group. Age-matched db/m mice were selected as normal control group. The mice were administered with corresponding drugs or solvent by gavage for 4 weeks. The oral glucose tolerance test was carried out at the end of $3^{rd}$ week. After 4 weeks of treatment, the concentrations of fasting blood glucose (FBG), glycated serum protein (GSP), insulin (INS), triglyceride (TG), total cholesterol (TC) and adiponection (APN) in serum were detected. The protein expressions of phosphorylation-$AMPK{\alpha}$1/2 in liver, phosphorylation-$AMPK{\alpha}$1/2 and glucose transporter-4 (GLUT-4) in skeletal muscle and adipose tissues were detected by western blot. Real time RT-PCR was used to detect the mRNA expressions of acetyl-CoA carboxylase (ACC) and Hydroxymethyl glutaric acid acyl CoA reductase (HMGCR) in liver. Our results showed that catalpol could significantly improve the insulin resistance, decrease the serum concentrations of INS, GSP, TG, and TC. The concentrations of APN in serum, the protein expression of phosphorylation-$AMPK{\alpha}$1/2 in liver, phosphorylation-$AMPK{\alpha}$1/2 and GLUT-4 in peripheral tissue were increased. Catalpol could also down regulate the mRNA expressions of ACC and HMGCR in liver. In conclusion, catalpol ameliorates diabetes in db/db mice. It has benefit effects against lipid/glucose metabolism disorder and insulin resistance. The mechanism may be related to up-regulating the expression of phosphorylation-$AMPK{\alpha}$1/2.

Choline supplementation improves the lipid metabolism of intrauterine-growth-restricted pigs

  • Li, Wei;Li, Bo;Lv, Jiaqi;Dong, Li;Zhang, Lili;Wang, Tian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.686-695
    • /
    • 2018
  • Objective: The objective of this study was to investigate the effects of dietary choline supplementation on hepatic lipid metabolism and gene expression in finishing pigs with intrauterine growth retardation (IUGR). Methods: Using a $2{\times}2$ factorial design, eight normal birth weight (NBW) and eight IUGR weaned pigs were fed either a basal diet (NBW pigs fed a basal diet, NC; IUGR pigs fed a basal diet, IC) or a diet supplemented with two times more choline than the basal diet (NBW pigs fed a high-choline diet, NH; IUGR pigs fed a high-choline diet, IH) until 200 d of age. Results: The results showed that the IUGR pigs had reduced body weight compared with the NBW pigs (p<0.05 from birth to d 120; p = 0.07 from d 120 to 200). Increased (p<0.05) free fatty acid (FFA) and triglyceride levels were observed in the IUGR pigs compared with the NBW pigs. Choline supplementation decreased (p<0.05) the levels of FFAs and triglycerides in the serum of the pigs. The activities of malate dehydrogenase and glucose 6-phosphate dehydrogenase were both increased (p<0.05) in the livers of the IUGR pigs. Choline supplementation decreased (p<0.05) malate dehydrogenase activity in the liver of the pigs. Gene expression of fatty acid synthase (FAS) was higher (p<0.05) in the IC group than in the other groups, and choline supplementation decreased (p<0.05) FAS and acetyl-CoA carboxylase ${\alpha}$ expression in the livers of the IUGR pigs. The expression of carnitine palmitoyl transferase 1A (CPT1A) was lower (p<0.05) in the IC group than in the other groups, and choline supplementation increased (p<0.05) the expression of CPT1A in the liver of the IUGR pigs and decreased (p<0.01) the expression of hormone-sensitive lipase in both types of pigs. The gene expression of phosphatidylethanolamine N-methyltransferase (PEMT) was higher (p<0.05) in the IC group than in the other groups, and choline supplementation significantly reduced (p<0.05) PEMT expression in the liver of the IUGR pigs. Conclusion: In conclusion, the lipid metabolism was abnormal in IUGR pigs, but the IUGR pigs consuming twice the normal level of choline had improved circulating lipid parameters, which could be related to the decreased activity of nicotinamide adenine dinucleotide phosphate-generating enzymes or the altered expressions of lipid metabolism-related genes.